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Abstract. Differentiable Hamiltonian systems close to nondegenerate, integrable Hamiltonian systems
are shown to be integrable on a Cantor set in the sense that on some Cantor set, (i) the invariant KAM-tori
form a smooth foliation, (ii) there exist smooth, independent integrals in involution, and (iii) there exists
a complete solution of the Hamilton Jacobi equation. The complement of the Cantor set is shown to be

small in measure.

(a) We are concerned with the question, to what extend perturbations of integrable
Hamiltonian systems still resemble the unperturbed, integrable system, although
integrability is generally lost and stochastic motion may appear in certain regions
of the phase space. In more geometrical terms, we are concerned with the existence
of a smooth foliation of invariant KAM-surfaces, filling the phase space with the
exception of a set with small measure.

In the following we present the essence of our results. Some more technical details
and proofs will appear elsewhere.

(b) Hamiltons equations of motion read:

q. = Hp(qv p)= p = - Hq(q’ p)a (1)

where the dot indicates differentiation with respect to the time. Since integrable
systems may be characterized by the existence of action-angle-variables, such that
the Hamiltonian depends on the action variable alone, we write

H(q.p)=Hp)+eH'(q.p), ¢e<1,

where H is assumed to have period 27 in each component of ¢ = (g, , ..., q,), while
p=(p,,...,p,) varies over some domain [ in R". The phase space therefore is
T" % I,

where T" is the usual n-torus obtained by identifying points in R" whose components
differ by integer multiples of 27; we assume n = 2.

For ¢ =0 the system is governed by the integrable Hamiltonian H°, and the
equations of motion reduce to
- q = a), p = 0
with

. (0]
w=H p(p).
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The whole phase space is completely foliated into an n-parameter family of invariant
tori T" x {p} with linear flow, so called Kronecker systems (T", w). The components
of & provide integrals in involution for the motion of the system. In general, they are
also functionally independent on I, which amounts to

dw o
det o det HY #0 )

This is the so called nondegenerate case, which we will assume in the sequel. In other
words, if the ‘amplitudes’ p vary over some open set, then the ‘frequencies’ @ vary
over some open set, too, and it causes no loss of generality to require

Hg:l—»Q

to be actually a diffeomorphism between I and the set Q of all frequencies w of the
integrable system. So we may as well parameterize the tori by their frequencies. Then
different types of tori exist side by side, for example those with rational frequencies
carrying periodic orbits, and those with rationally independent frequencies carrying
transitive orbits. In fact, both types of tori form dense subsets in phase space.

We want to continue these tori for small ¢ # 0. First we observe that some sort
of nondegeneracy condition like (2) for the integrable system is essential; if it is too
degenerate, the motion may become ergodic on each energy surface, thus destroying
alltori [3]. But even if the integrable system is nondegenerate, those tori with periodic
orbits will generally break up under small perturbations, as was already known to
Poincaré. Finally, by the work of Kolmogorov, Arnold and Moser, it turned out that
those tori will persist whose frequencies are not only rationally independent, but
satisfy a ‘small divisor condition’

|(w, k)| =7|k|77, 0 kez"

with y > 0. Simple measure theoretical considerations show that in fact almost all
points in R" satisfy such a condition for some y while 7> n — 1 is kept fixed; so we
can find such points in the open set Q, too. However, we can’t allow y to vary, but
we have to fix it in advance, since it will enter in the smallness condition for the
perturbation. Therefore we single out the Cantor set

QyCQ

of those frequencies satisfying the small divisor condition for the given y and having
also distance =y to the boundary of Q. Obviously
Q- Q,
y>0
is a set of measure zero, so Q becomes large for small y.

Now the results of Kolmogorov, Arnold and Moser assert the following [1, 4,8,
10, 11]. Let the integrable Hamiltonian H® be real analytic and nondegenerate, and
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let the perturbed Hamiltonian H = H® + ¢H' be of class C" with r > 2t + 2 > 2n.
Then there exists a positive, y-independent o, such that for

le| < y%6

the perturbed system possesses invariant Kronecker systems (7", w) for all weQ "
close to the corresponding unperturbed Kronecker systems.

Hence there exists a whole bunch of invariant tori parameterized over the Cantor
set Q . But all these tori are constructed separately as subsystems of (1), and it is not
at all clear to what extend they fit together in a smooth way. The only result in this
direction was obtained by Arnold [ 1] for analytic perturbations where he showed the
tori to depend continuously on w.

Our main result states the existence of one coordinate system which straightens
out all these invariant tori at the same time, thereby proving their foliation to be
differentiable on Q . It also will enable us to estimate very easily the measure of their
complement in phase space in the differentiable case which is not possible with the
results known so far.

THEOREM: Let the integrable Hamiltonian H® be real analytic and non-degenerate,
such that the frequency map is a diffeomorphism I — Q, and let the perturbed Hamiltonian
H=H°+¢H'beofclass C*****withi>t+1>nand o> 1.

Then there exists a positive, y-independent 6, such that for |e| < y*6 with y sufficiently
small, there exists a diffeomorphism

T:T"xQ->T"x 1
which on T" x Q, transforms the Hamiltonian equations of motion into
=w, &=0. (3)

T is of class C* for noninteger a and close to the inverse of the frequency map; its
Jacobian determinant is uniformly bounded from above and below.

In addition, if H is of class C****** with o < f < o0, then one can modify T outside
T" x Q, so that T is of class C? for noninteger p.

Thus for each weQ, the map 6 — T(6, w) parameterizes an invariant Kronecker
system (T", w), and this parameterization is differentiable in w. This allows us to
speak of an “integrable system on the Cantor set 7" x €.”.

Actually, the transformation T is much smoother tangentially to the invariant
tori_than transversally to them, but we will suppress this aspect of ‘anisotropic differ-
entiability’ here.

Of course, the transformation T is not symplectic. A similar ‘normalization’ can
be achieved with a symplectic transformation, as we will see later on; in this case,
however, the basis of the foliation can not be fixed in advance like Qy, but has to be
determined in dependence on the perturbation.
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(c) We indicate the line of proof. We obtain T as the product of two transformations,
namely the real analytic inverse ‘¥ of the frequency map leaving the angle variables
fixed, and a diffeomorphism ® on T" x Q close to the identity:

T=V¥,0.

¥, is determined by the integrable system alone and is used to rephrase the problem
in terms of the (8, w)-variables. It is only the diffeomorphism ®, which depends on the
perturbation, and its essential part is
¢=0[T"xQ,

a map defined on a Cantor set. In fact, it is this map ¢ which we will construct first by
the well known iteration process of Newton type due to Kolmogorov [4] and Arnold
[1] combined with an approximation of the differentiable perturbation by real
analytic ones, an idea due to Moser [ 7]. We will end up with a sequence of real analytic
transformations ¢,, where both ¢, and D¢, converge uniformly on T" x €. :

b= ¢, Do~ ¢

Now the point is to interpret this limit (¢, ¢') as a differentiable map on the closed
set T" x Q, in the sense of Whitney [12,14]. This allows us to extend ¢ to a map
Q:T"x Q- T"x Q such that

OIT"xQ =d, DOT"xQ =4¢'.
Higher differentiability is obtained similarly. However, these extensions are by no

means unique, and depend in particular on the differentiability order. On the other
hand, the map ¢ is unique up to a phase shift.

(d) There already exist some related results for mappings. For perturbations of
twist maps in the plane preserving the intersection property Lazutkin [5] established
the existence of a differentiable family of invariant curves parameterized over a
Cantor set of rotation numbers. Svanidze [13] extended these results to higher
dimensional mappings preserving a certain integral. They both use a modified version
of Moser’s original technique [ 6 ] where at each step of the iteration the equations are
altered near finitely many resonances to obtain smooth global transformations @,
converging to some limit ®@. This technique, however, requires an excessive amount of
differentiability in the perturbation; it also does not apply to the C*-case.

(e) There are two simple corollaries to our Theorem.

In view of (3) the components of w surely form functionally independent integrals
for the flow on T" x Q.. They are also in involution with respect to the transformed
symplectic structure on T" x Q . Expressing them as functions in g and p we obtain

COROLLARY 1: On phase space there exist n smooth, independent functions, which
are in involution and integrals of the motion when restricted to the image of T" x Q under
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T. They can be chosen to be of class C* if the Hamiltonian is of class C****** with non-
integer B.

This further justifies to speak of an integrable system on a Cantor set. It generalizes
a result of Chierchia and Gallavotti [2], who recently constructed such integrals in
the analytic case.

Now we estimate the measure of the set & left out by the invariant tori in phase
space in terms of the perturbation parameter e. For small ¢ this measure will also be
small. In the analytic case, this result is due to Arnold [1] ; in the differentiable case,
it has been stated frequently, but to our knowledge no proofs have been given so far.

The natural measure in this context is the invariant Liouville measure (X dp; A dg,)",
which happens to be the Lebesgue measure #. Now, by the change of variables
formula and the uniform bounds for the Jacobian determinant of T, the measure of
the full space .# = T" x I is comparable with the measure of Q, while #(&) is com-
parable with »(Q — Q). But for a bounded set Q with piecewise smooth boundary it is

w(Q — Q) =0(y) Q). 4)
Choosing y proportional to\/g we find

COROLLARY 2: If(4) holds then the set of all invariant tori in phase space S leaves
out a set & with

(&) = 0(/8) m(F).
where s is the invariant Liouville measure associated with the symplectic structure, and
¢ is the perturbation parameter.
We mention a third corollary which makes use of a more precise form of the small-
ness condition of the perturbation which we do not give here.
Consider an equilibrium in a sufficiently smooth Hamiltonian system with
characteristic exponents

GOy ey 0, — 20, ., — o,

all on the imaginary axes. Assume there exist no resonances up to some finite order
(24
Tho,#0 if 1<|k, |+ ... +]k,|<¢. (5)

Then one can introduce canonical coordinates (i, v) in some neighbourhood of the
equilibrium such that the Hamiltonian is reduced to a Birkhoff normal form of degree
#Z up to terms of order Z + 1. That is, we have

. H=H°+H

with a unique polynomial H in r, = u? + v} of order ¢ with respect to u and v, while
H is small of order Z + 1 in u and v. The polynomlal part is integrable, and it is non-
degenerate if

det(H® )+ 0. (6)

Firj
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If both (5) and (6) hold we speak of a general elliptic equilibrium of order 7.

COROLLARY 3: Near a general elliptic equilibrium of order ¢ Z 4 in a sufficiently
smooth Hamiltonian system one has

wl(6) =0l 2), A= 7
for the set & of instability in the polydisc 2,:u? + v? <r around the equilibrium, pro-
vided the Hamiltonian is in Birkhoff normal form in (u, v) up to order £ + 1.

(f) As a side product of the iteration process leading to the transformation T of our
Theorem we also obtain on some Cantor set in phase space a solution of the Hamilton
Jacobi equation

Such a solution is called complete, if in addition
det(I — qu) +0.

For areal analytic Hamiltonian H, Poincaré [9] gave a solution in terms of a formal
power series in a small perturbation parameter known as the Lindstedt series. How-
ever, these series are doomed to be divergent due to the occurrence of small divisors
which vanish on a dense set. In fact, a complete solution of (7) on an open set would
imply the integrability of the Hamiltonian system, which generically is not the case.
Nonetheless, there indeed exist solutions for particular choices of P, and this is
nothing but a restatement of the KAM-theorem on the existence of invariant tori.
We assert that these particular solutions depend smoothly on P.

ADDENDUM TO THEOREM: On T" x I there exists a function S which is small
with €, and a nondegenerate Hamiltonian K, which is independent of the angle variables,
such that

H(g, P — S,(q, P))| T" x I, = K(P), ®)

where 1 is the inverse image of Q, under the map P — K (P). In addition, if H is of class
CP**2% then one can modify S and K respectively outside T" x I, to be of class C* and
C?*2 for noninteger B ; moreover, (8) may be differentiated as often as S allows.

Note that the differentiability of Equation (8) is not a matter of course, since I ) is
nowhere dense.

Thus, for a sufficiently smooth Hamiltonian and a sufficiently small perturbation,
we obtain a complete solution of the Hamilton Jacobi equation on the Cantor set
T" x I,. This allows us to derive again not only the existence of invariant tori, but
also the linearity of the flow on each torus, since we may differentiate with respect to P.

THE CONCEPT OF INTEGRABILITY ON CANTOR SETS FOR HAMILTONIAN SYSTEMS 139

We may even take S to define implicitly a symplectic map (Q, P)—(q, p) by
p=P—Sq(q’P)’ Q:q_Sp(q’P)

transforming the perturbed Hamiltonian H on T" x I, into the integrable Hamil-
tonian K. This map is in fact exact symplectic, since S is 2n-periodicing,, ..., q,.
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