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A Note on Gaps of Hill’s Equation

Benoît Grébert, Thomas Kappeler∗& Jürgen Pöschel

1 Results

We consider the differential operator

L = − d2

dx2
+ q, q ∈ L2 = L2(S1, R)

on the interval[0, 1] endowed with periodic or anti-periodic boundary conditions:

y(0) = y(1), y′(0) = y′(1)

or

y(0) = −y(1), y′(0) = −y′(1).

The corresponding differential equation

−y′′ + qy = λy

is also known asHill’s equation with potential q.
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Network HPRN-CT-1999-00118.



2 Section 1: Results

It is well known that the spectrum ofL is pure point and consists of an un-
bounded sequence ofperiodic eigenvalues

λ0(q) < λ1(q) ≤ λ2(q) < λ3(q) ≤ λ4(q) < . . . .

Equality or inequality may occur in every place with a ‘≤’-sign, and one speaks of
thegaps(λ2n−1(q), λ2n(q)) of the potentialq and itsgap lengths

γn(q) = λ2n(q) − λ2n−1(q), n ≥ 1.

If some gap length is zero, one speaks of acollapsed gap, otherwise of anopen gap.
The purpose of this note is to give new, short proofs of two facts relating these

gap lengths to the regularity of the potentialq. To formulate these results, denote
by Hm = Hm(S1) the Sobolev space ofm times weakly differentiable functions of
period 1. That is,

Hm = {
u ∈ L2(S1, R) : ‖u‖m < ∞}

,

where‖u‖2
m = |û(0)|2+∑

n6=0 n2m|û(n)|2 is defined in terms of the discrete Fourier
transformû of u.

The following result was first proven by Marčenko & Ostrowskĭ“ [12], using in-
verse spectral theory. Their approach was later simplified by Garnett & Trubowitz [3]
and generalized in [7]. For a more elementary proof see also [4, 5].

Theorem 1.1 The gap lengths satisfy∑
n≥1

n2mγ 2
n < ∞

locally uniformly on Hm for any m≥ 0.

In fact, Mařcenko & Ostrowskĭ“ [12] also prove the converse statement: if the
gaps of a given potential inH0 are as above, then this potential is inHm. For further
results in this directon see also [3, 7, 8].

The second result concerns the density of finite gap potentials, which are po-
tentials with only a finite number of open gaps.

Theorem 1.2 Finite gap potentials are dense in Hm for any m≥ 0.

This result was conjectured by Novikov [14] (see also Lax [9]) and first proven
by Mařcenko & Ostrovskii [12]. See also [3, 7, 10, 11] and others, for example [13].
While these approaches use inverse spectral theory, our proof uses only asymptotic
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properties of some spectral data. In this respect, the first proof sans inverse spectral
theory appeared in [1] for the casem = 0.

We point out that Theorems 1.1 and 1.2 are used in the proof of the normal
form theorem for KdV in [6], asserting that KdV admits Birkhoff coordinates in any
Sobolev spaceHm, m ≥ 0. The casem = 0 of these two theorems is treated in
detail in [6], while the casem ≥ 1 is quoted from other sources. With this note we
supply a proof for the casem ≥ 1 along the same lines as form = 0 – as it should
have appeared in [6] . . .

The rest of this note is devoted to new proofs of these two results. Indeed, we
also show that Theorem 1.1 holds in some complex neighbourhood ofHm for each
m ≥ 0, and that there is a similar result for quantities involving Dirichlet eigenvalues.

2 Some Background

Denote byy1, y2 the fundamental solution of−y′′ + qy = λy satisfying

y1(0, λ, q) = 1, y2(0, λ, q) = 0,

y′
1(0, λ, q) = 0, y′

2(0, λ, q) = 1.

The spectrum of the operator

L = − d2

dx2
+ q, q ∈ L2,

endowed with Dirichlet boundary conditions is called theDirichlet spectrum of q
and coincides with the zero set of the entire functiony2(1, ·, q). It is an unbounded
sequence ofDirichlet eigenvalues

µ1(q) < µ2(q) < µ3(q) < . . . ,

which are all simple. With each eigenvalue one can associate a uniqueDirichlet
eigenfunction

gn = y2

‖y2‖
∣∣∣∣
λ=µn

, n ≥ 1.

Besides theµn we also need to consider the quantities

κn(q) = log(−1)ny′
2(1, µn(q), q), n ≥ 1,

which measure the terminal velocities of the eigenfunctions.
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The following facts are proven in [15]. We writè2m(n) for then-th term of a
generic sequencex = (xn)n≥1 with∑

n≥1

n2m|xn|2 < ∞,

and`2(n) for `2
0(n). Further,[q] = ∫ 1

0 q(x) dx denotes the mean value ofq.

Proposition 2.1 For each n≥ 1, µn and κn are real analytic functions on
L2 with L2-gradients

∂µn = g2
n, ∂κn = an − [an]g2

n,

where an = y1y2|µn
. Moreover,

µn = n2π2 + [q] + `2(n), κn = `2
1(n),

and

∂µn = 1 − cos 2πnx + O

(
1

n

)
, ∂κn = sin 2πnx

2πn
+ O

(
1

n2

)
,

(∂µn)
′ = 2πn sin 2πnx + O(1), (∂κn)

′ = cos 2πnx + O

(
1

n

)
,

locally uniformly on L2.

A similar result holds for the periodic eigenvaluesλ2n andλ2n−1, when they
aresimple. Only then they are analytic functions ofq and admit unique normalized
eigenfunctionsf2n and f2n−1. Let Dn = {q : λ2n−1(q) = λ2n(q)}.

Proposition 2.2 For each n≥ 1, λ2n and λ2n−1 are real analytic functions
on L2 X Dn with L2-gradients

∂λ2n = f 2
2n, ∂λ2n−1 = f 2

2n−1.

Moreover,

λ2n, λ2n−1 = n2π2 + [q] + `2(n)

and
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∂λ2n = sin 2πn(x − xn) + O

(
1

n

)
,

(∂λ2n)
′ = 2πn cos 2πn(x − xn) + O(1),

with some0 ≤ xn ≤ 2 locally uniformly on L2 X Dn . The same holds with2n − 1
in place of2n.

This result can be deduced from the preceding proposition by noting that

λ2n(q) = µn(qt )

for a properly shifted potentialqt = q(· + t), wheret depends onn. Then also
f2n(·, q) = gn(· − t, qt ).

In contrast to the eigenvalues themselves, the quantities

γ 2
n = (λ2n − λ2n−1)

2, τn = 1

2
(λ2n + λ2n−1)

areanalytic functions ofq on all of L2. The following is proven in [6].

Proposition 2.3 For each n≥ 1, τn and γ 2
n are real analytic functions on

L2, such that their L2-gradients belong to H2. In particular,

∂τn = 1 + O

(
1

n

)
, (∂τn)

′ = O(1)

locally uniformly on L2.

Actually, these three propositions hold on some complex neighbourhood ofL2

independent ofn, with Dn as above. See [15] for theµn andκn , and [6] for the other
quantities.

3 Basic Lemma and Proof of Theorem 1.1

We begin with a simple observation about the product of two solutions of the
equation−y′′ + qy = λy for anyq in H1, real or complex.

Let 〈u,v〉 = ∫ 1
0 u(x)v(x) dx, and letD = d/dx. Further, let

Hm
0 = {

u ∈ Hm : [u] = 0
}
.
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Lemma 3.1 (Basic Lemma) Let q ∈ H1, and let f and g be two solutions
of −y′′ +qy = λy, such that either f g is 1-periodic, or g vanishes at0 and1. Then

2λ〈 f g,h〉 = 〈 f g,Ph〉

for any h∈ H1
0 with P = −1

2 D2 + 2q + q′ I , where Ih= ∫
0 h(x) dx .

Remark. The right hand side is understood in the weak sense:

〈 f g,Ph〉 = 1

2
〈( f g)′,h′〉 + 〈 f g,2qh + q′ I h〉.

Of course, forh ∈ H2
0 , the identity holds in the strong sense as well.

Proof. One verifies by direct calculation that for any two solutionsf andg
of −y′′ + qy = λy one has

L( f g) = 2λD( f g),

whereL = −1
2 D3 + q D + Dq. Hence,

2λ f g = I L ( f g) + c,

where I u = ∫
0 u(x) dx. Pairing both sides of this equation withh ∈ H1

0 , we get

2λ〈 f g,h〉 = 〈I L ( f g),h〉,
as the term〈c,h〉 = c[h] vanishes.

We haveI h|0 = 0 and I h|1 = [h] = 0 by the definition ofI . Integration by
parts thus leads to

〈I L ( f g),h〉 = −〈L( f g), I h〉

= 1

2

(
( f g)h′ − ( f g)′h

)∣∣∣∣1
0
+ 〈 f g,L Ih〉.

If f g is 1-periodic, then the boundary terms clearly vanish, since alsoh is 1-periodic.
If, on the other hand,g vanishes at 0 and 1, then

( f g)′h − ( f g)h′∣∣1
0 = f g′h

∣∣1
0 = ( f g′ − f ′g)h

∣∣1
0.

The last term vanishes, too, sincef g′ − f ′g is constant by the Wronskian identity.
Hence in either case,

〈I L ( f g),h〉 = 〈 f g,L Ih〉.
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This is the claim, sinceL I = P.

As γn is differentiable only when it does not vanish, it is convenient to intro-
duce

ðγn =
{

∂γn whenγn 6= 0,

0 otherwise.

Then Theorem 1.1 is contained in the following statement.

Theorem 3.2 Let q ∈ Hm with m ≥ 0. Then(i)

〈ðγn,h〉 = `2
m(n)‖h‖m

for h ∈ Hm, and(ii)

γn = `2
m(n).

Both estimates hold locally uniformly in q in a complex neighbourhood of Hm.

Proof. We first show that (ii) follows from (i) for eachm ≥ 0. As the com-
plex neighbourhood ofHm may be described as a union of complex balls centered
in Hm, we may connect anyq in this neighbourhood with the zero potential by a
path

qt = α(t) Req + β(t) Im q, 0 ≤ t ≤ 1,

whereα(t) = min(2t, 1) andβ(t) = max(2t − 1, 0). By the analyticity ofγ 2
n – see

Proposition 2.3 – we then have

γ 2
n (qs) = γ 2

n (qt )
∣∣s
0 =

∫
A

d

dt
γ 2

n (qt ) dt

= 2
∫

A
γn(qt )〈ðγn(qt ),q̇t 〉 dt

= 2
∫ s

0
γn(qt )〈ðγn(qt ),q̇t 〉 dt,

whereA = {t ∈ [0, s] : γn(qt ) 6= 0}. Hence, by the Schwarz inequality,

∣∣γ 2
n (qs)

∣∣2 ≤ 4
∫ s

0

∣∣γ 2
n (qt )

∣∣ dt
∫ s

0
|〈ðγn(qt ),q̇t 〉|2 dt

≤ 4 sup
0≤t≤1

∣∣γ 2
n (qt )

∣∣ ∫ 1

0
|〈ðγn(qt ),q̇t 〉|2 dt.
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Taking the supremum over 0≤ s ≤ 1 on the left hand side and cancelling terms,

∣∣γ 2
n (q)

∣∣ ≤ sup
0≤t≤1

∣∣γ 2
n (qt )

∣∣ ≤ 4
∫ 1

0
|〈ðγn(qt ),q̇t 〉|2 dt.

Now (ii) follows from (i), since the estimate of (i) holds uniformly in a neighbour-
hood of the pathqt by the compactness of thet -interval and‖q̇t‖m ≤ 2‖q‖m for
0 ≤ t < 1/2 and 1/2 < t ≤ 1.

Now we prove (i). This is done by induction onm, and we begin with the
induction step form ≥ 2. It suffices to considern ≥ 1 such that Reλ2n−1 > 0.

Let h ∈ Hm. Since
[
ðγn

] = 0, we have〈ðγn,h〉 = 〈ðγn,h0〉 for h0 = h− [h] .
If γn 6= 0, the Basic Lemma together with Proposition 2.2 then gives

〈ðγn,h〉 = 〈
f 2
2n − f 2

2n−1,h0
〉

= 1

2λ2n

〈
f 2
2n,Ph0

〉 − 1

2λ2n−1

〈
f 2
2n−1,Ph0

〉
= 1

2λ2n

〈
f 2
2n − f 2

2n−1,Ph0
〉 + (

1

2λ2n
− 1

2λ2n−1

)〈
f 2
2n−1,Ph0

〉
.

Hence,

〈ðγn,h〉 = 1

2λ2n
〈ðγn,Ph0〉 − γn

2λ2nλ2n−1

〈
f 2
2n−1,Ph0

〉
. (1)

The last identity also holds whenγn = 0, where f2n−1 could beany normalized
eigenfunction forλ2n = λ2n−1. So this identity holds everywhere.

We havePh0 ∈ Hm−2 with ‖Ph0‖m−2 = O(‖h‖m). By the induction hy-
pothesis andλ2n ∼ n2 we thus obtain

1

2λ2n
〈ðγn,Ph0〉 = n−2`2

m−2(n)‖Ph0‖m−2 = `2
m(n)‖h‖m

for the first term. As to the second term, note thatγn = O
(
n−m+2

)
by the induction

hypothesis andf 2
2n−1 = O(1) to obtain

γn

2λ2nλ2n−1

〈
f 2
2n−1,Ph0

〉 = O
(
n−m−2)‖Ph0‖m−2 = `2

m(n)‖h‖m

as well. This completes the induction step.
It remains to establish (i) form = 0 andm = 1. For m = 0, this is a direct

consequence of Proposition 2.2. Form = 1, we interpret (1) in the weak sense,
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writing
1

2λ2n
〈ðγn,Ph0〉 = 1

2

〈
(ðγn)

′,h′
0

〉 + 〈ðγn,(P − P0)h0〉,

and similary

〈
f 2
2n−1,Ph0

〉 = −1

2

〈
( f 2

2n−1)
′,h′

0

〉 + 〈
f 2
2n−1,(P − P0)h0

〉
,

whereP0 = P|q=0 = −1
2 D2. The claim then follows with the asymptotic formulas

of Proposition 2.2 for∂γn and f 2
2n−1 and their derivatives.

4 Further Auxiliary Results

In this section we use the approach of the previous section to give new, short
proofs of asymptotic estimates forτn −µn andκn and theirL2-gradients introduced
in section 2. Let

cn = cos 2πnx,

sn = 1

2πn
sin 2πnx,

and let〈u,v〉 = ∫ 1
0 u(x)v(x) dx as before.

Proposition 4.1 Let q ∈ Hm with m ≥ 0. Then(i)

〈∂κn,h〉 = 〈sn,h〉 + O

(
1

nm+2

)
‖h‖m

for h ∈ Hm, and(ii)

κn = 〈sn,q〉 + O

(
1

nm+2

)
.

Both estimates hold locally uniformly in q in a complex neighbourhood of Hm.

Proof. Again, (ii) follows from (i). Using the same pathqt as in the proof of
the Basic Lemma, we have

κn(q) = κn(qt )
∣∣1
0 =

∫ 1

0
〈∂κn(qt ),q̇t 〉 dt

= 〈sn,q〉 +
∫ 1

0
〈∂κn(qt ) − sn,q̇t 〉 dt,
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which gives the result.
To prove (i) by induction, let firstm ≥ 2 andh ∈ Hm. It suffices to consider

n ≥ 1 with µn > 0. As, by Proposition 2.1,

∂κn = an − [an]g2
n

has mean value zero,〈∂κn,h〉 = 〈∂κn,h0〉 for h0 = h − [h] . The Basic Lemma and
the induction hypothesis then give

〈∂κn,h〉 = 1

2µn
〈∂κn,Ph0〉

= 1

2µn

(〈sn,Ph0〉 + O
(
n−m)‖Ph0‖m−2

)
= 1

2µn
〈sn,Ph0〉 + O

(
n−m−2)‖h‖m.

Moreover, withP0 = P|q=0 andµo
n = µn|q=0,

1

2µn
〈sn,Ph0〉 = 1

2µo
n
〈sn,P0h0〉 + µo

n − µn

2µo
nµn

〈sn,P0h0〉

+ 1

2µn
〈sn,(P − P0)h0〉.

The last two terms are again bounded byO
(
n−m−2

)‖h‖m by standard estimates for
Fourier coefficients, while

1

2µo
n
〈sn,P0h0〉 = − 1

4π2n2
〈sn,h′′〉 = 〈sn,h〉

by integration by parts, the boundary terms vanishing by the periodicity ofcnh. This
completes the induction step.

The claim form = 0 andm = 1 follows as in the proof of Theorem 3.2 from
the asymptotic formulas for∂κn in Proposition 2.1.

Proposition 4.2 Let q ∈ Hm with m ≥ 0. Then(i)

〈∂(τn − µn),h〉 = 〈cn,h〉 + O

(
1

nm+1

)
‖h‖m

for h ∈ Hm, and(ii)
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τn − µn = 〈cn,q〉 + O

(
1

nm+1

)
.

Both estimates hold locally uniformly in q in a complex neighbourhood of Hm.

Proof. Again, (ii) follows from (i) as in the previous proof. To prove (i) by
induction, we note that also∂(τn − µn) has mean value zero, whence

〈∂(τn − µn),h〉 = 〈∂(τn − µn),h0〉

for h0 = h − [h] . If γn 6= 0 andn is sufficiently large, the Basic Lemma then gives

〈∂(τn − µn),h〉 = 1

2
〈∂λ2n + ∂λ2n−1,h0〉 − 〈∂µn,h0〉

= 1

2

2n∑
m=2n−1

1

2λm
〈∂λm,Ph0〉 − 1

2µn
〈∂µn,Ph0〉

= 1

2τn
〈∂(τn − µn),Ph0〉 − τn − µn

2τnµn
〈∂µn,Ph0〉

+
2n∑

m=2n−1

τn − λm

4τnλm
〈∂λm,Ph0〉.

If γn → 0, then the last sum vanishes, sinceτn −λm → 0, while∂λm stays bounded
in L2. Hence the last identity also makes sense forγn = 0, if the sum is understood
to be zero.

From this point on, one argues as in the previous proof, using

τn − µn = O

(
1

nm−2

)
by the induction hypothesis and standard estimates of Fourier coefficients. The same
applies toτn − λ2n andτn − λ2n−1, since a periodic eigenvalue coincides with the
corresponding Dirichlet eigenvalue of a properly shifted potential.

To summarize the results of this section, let

αn := τn − µn + 2πi nκn

anden = e2π inx.
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Theorem 4.3 For each n≥ 1, Reαn and Im αn are real analytic on Hm,
with

αn = 〈en,q〉 + O

(
1

nm+1

)
.

This estimate holds locally uniformly on a complex neighbourhood of Hm.

Remark. With the proofs of Theorems 3.2 and 4.3 we have given an elemen-
tary argument for Proposition B.9 in [6, p. 199], stating that∑

n≥1

n2m(|γn|2 + |τn − µn|2
) = O(1)

locally uniformly on a small complex neighbourhood ofHm.

5 Proof of Theorem 1.2

It suffices to prove the density of finite gap potentials within the spaces

Hm
0 = {

q ∈ Hm : [q] = 0
}

of potentials of vanishing mean value, since adding a constant to a potential just
shifts the entire spectrum, leaving the gap lengths unchanged.

Rather than the gap lengths, however, we consider the quantitiesαn introduced
above in view of the following simple observation.

Lemma 5.1 For q in L2
0 and any n≥ 1,

γn(q) = 0 iff αn(q) = 0.

Proof. Fix q andn. If γn = 0, thenµn = τn , and then-th Dirichlet eigen-
function gn is also a periodic or anti-periodic eigenfunction. But then∣∣y′

2(1, µn)
∣∣ = 1,

whence alsoκn = 0, and thusαn = 0.
Conversely, ifαn = 0, thenκn = 0 implies thatgn is a periodic or anti-

periodic eigenfunction, henceµn is also a periodic eigenvalue. Since in addition
µn = τn , the corresponding gap must be collapsed, whenceγn = 0.

Section 5: Proof of Theorem 1.2 13

Consider now the map

A: Hm
0 → hm, q 7→ (αn(q))n≥1,

wherehm is the Hilbert space of allcomplexsequencesv = (vn)n≥1 with

‖v‖2
m =

∑
n≥1

n2m|vn|2 < ∞.

By Theorem 4.3 and Theorem A.5 in [6] this map is analytic. By the previous lemma,
q is a finite gap potential, iff all but finitely many coordinates ofA(q) vanish.

To prove Theorem 1.2, however, it is rather more convenient to consider the
map

G = A B 8 : hm → hm,

where

8 : hm → Hm
0 , (ξn)n≥1 7→ 2 Re

∑
n≥1

ξne2π inx

is the inverse of the restriction of the discrete Fourier transform toHm
0 . Since8 is a

linear isomorphism it suffices to prove the following statement, which also contains
the statement made in Remark 2 in [6, p. 206].

Proposition 5.2 For ξ in a dense subset ofhm, with m ≥ 0, all but finitely
many coordinates of G(ξ) vanish.

Proof. In view of Theorem 4.3, the mapG is real analytic, when considered
as a map

(Reξ, Im ξ) 7→ (ReG(ξ), Im G(ξ)).

It is of the form I + K , whereK mapshm into a smaller spacehm+σ , 0 < σ < 1/2.
It follows with Cauchy’s inequality that on some ball around any given point inhm,
the Jacobian dK is uniformly bounded as a linear maphm → hm+σ . Consequently,

‖TNdK‖m ≤ 1

2

on the same ball for all sufficiently largeN in the operator norm onhm, whereTN

denotes the projection onto allexceptthe first N coordinates inhm.
Now fix ξo in hm, and letε > 0 be so small that the preceding estimate holds

on the 4ε-ball B aroundξo for all sufficiently largeN . We may then fixN so large
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that also ∥∥TNG(ξo)
∥∥

m < ε.

Writing ξ = ξN + ζN with ζN = TNξ we then have

TNG(ξ) = TNG(ξN + ζN) = ζN + TN K (ξN + ζN)

with ∥∥dζN TN K
∥∥

m ≤ 1

2

uniformly on B. The map

ζN 7→ ζN + TN K (ξo
N + ζN)

is thus a local diffeomorphism, and by the inverse function theorem the image of
the ball ‖ζN‖m < 4ε under this map covers a ball of radius 2ε aroundTNG(ξo).
Consequently, in view of‖TNG(ξo)‖m < ε, there existsξs = ξo

N + ζ s
N with∥∥ξs − ξo

∥∥
m = ∥∥ζ s

N − ζ o
N

∥∥
m < 4ε

such thatTNG(ξs) = 0. Sinceε > 0 can be chosen arbitrarily small, this proves the
claim.

Remark. The proof incidentally shows that there exists a finite gap potential
with any finite number of Fourier coefficients prescribed arbitrarily.
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