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Small Divisorswith Spatial Structure
In
I nfinite Dimensional Hamiltonian Systems

JURGEN POSCHEL

1 Basic concepts and notions

The purpose of this paper is to present a perturbation theory for integrable
hamiltonian systems of the Kolmogorov-Arnold-Moser type that comprises the clas-
sical result for general perturbationsin the finite dimensional case[12,1,18,33,2,20],
finite chains of weakly coupled oscillators [36,39], finite dimensional systems with
short range interactions [37], systems of infinitely many oscillators with finite range
couplings [10,36], and a few more infinite dimensional systems with varying kinds
of couplings and localizations. Indeed, our work was initiated and inspired by the
progressin thisareadueto Bellissard, Frohlich, Spencer, Vittot and Wayne (in a pha-
betical order) and grew out of an attempt to obtain a unified approach to their results.

The key idea is to consider perturbations not as a single chunk but rather as
compositesof smaller piecesreflecting an underlying spatial structure. Theallowable
size of these pieces is determined by weights associated with their supports. These
weights also determine all other quantitative aspects of the theory such as the shape
of domains and the small divisor conditions. The validity of those nonresonance
conditionsistied to some distribution property of the spatial structure with respect to
the weight and cardinality of its components.

Spatial structures are characterized by a single structure property, and weight
functions by the properties of monotonicity and subadditivity — see (3) and (4) re-
spectively. Theseare simpleconcepts, and switching from oneweighted spatial struc-
ture to another alows one to study various kinds of perturbations without labouring
through the tedious KAM-proof again and again.
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Our approach may also give some hint why the KAM-theory fails for certain
models. In oneway or another such afailureistied to the failure of the small divisors
to obey the growth conditions imposed on them in terms of approximation functions.
In a most remarkable achievement Yoccoz [41] was able to show that such growth
conditions areindeed necessary in the simplest of these stability problems, the Siegel
center problem in the complex plane [33].

Our approach also failsin another way, and naturally so. The perturbations are
required to be “sufficiently localized” allowing for “sufficiently localized” nonreso-
nant invariant tori of maximal dimension. It apparently does not apply to nonlinear
partial differential equations such as the nonlinear wave equation, where there is no
such localization at all. A different approach is appropriate here, aiming to find in-
variant tori of finitedimensionininfinite dimensional systems. Thiscrucially reduces
the restrictions posed on the small divisors. We refer to [13,40,27] for details.

Our point of departure is a collection of an arbitrary number of harmonic os-
cillators occupying the sites 1. of some lattice A or asubset thereof. The shape, size
or dimension of this lattice are of no concern.

The configuration of an individual oscillator is described by a single pair of
angle-action coordinates ¢;, |, for ease of notation. Its motion is described by a
single frequency w; . The hamiltonian of such asystemis

N=e+) wli=e+(o.1),
reA

and its equations of motion are

¢ =w
| =0

in usual vector notation. The underlying phase spaceis
P =T x R4,

where T denotes the standard one-torus obtained from the real line by identifying
points modulo 27 .

Asafurther smplification thefrequencies w areregarded asparametersvarying
freely over somesubset O of the parameter space R4 . Thisistantamount toimposing
a‘“nondegeneracy” or “anisochronicity” condition upon the unperturbed system, and
given such a condition those frequencies may always be introduced as parameters.
This has the advantage that it suffices to consider hamiltonians N that are just linear
inl.
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We are going to study hamiltonians that are— in an appropriate sense — small
perturbations of the integrable hamiltonian N . Our aimisto prove the persistence of
the invariant torus

To=T4 x {0}

of maximal dimension together with its constant vectorfield w.

The crucial assumption is that the perturbation decomposes into a series of
smaller pieces which involve only finitely many lattice sites each. Precisely, we
consider hamiltonians of the form

H=N+P, P=>) Pa
AeS

where § isafamily of finite subsets A of A on which the individua perturbations
Pa “live’. That isto say, Pa does not depend on the configuration of any oscillator
outside of A.

Thisfamily S isnot totally arbitrary. Rather, 8 hasto be aspatial structure on
A characterized by the property that the union of any two setsin § isagainin 8, if
they intersect:

ABeS, ANB## = AUBEeS. (3)

This property is necessary and sufficient for the spatial structure to be preserved
under Poisson brackets. Of course, not all termsin the given spatial expansion of the
perturbation P need to be present.

Themainingredient of our perturbation theory isanonnegative weight function

[-1: A=A

definedon SNS = {ANB: A, Bes8}. Theweght of a subset may reflect its
size, itslocation or something else. This, however, isimmaterial for the perturbation
theory itself. Here only the properties of monotonicity and subadditivity are required:

ACB = [A] <[B]

4

ANB#@¢ = [AUB]+[ANB] <[A]+[B] @

forall A, B in §. All other quantitative aspects are expressed in terms of thisweight
function.

Inacrucial fashion the weight function determines the nonresonance conditions
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for the small divisors arising in this theory. They are the usual ones, namely

(k, w) = Z Ky.oy,

reA

where due to the spatial structure of the perturbation k runs over al nonzero integer
vectorsin Z“ whose support

suppk = {A : k; # 0}

iIsafinite set.

Requiring the components of P to decay rapidly — as we will do later on by
way of an appropriate norm — it suffices to estimate these small divisors from below
not only in terms of the normof k,

Kl =) "1kl

reA

but also in terms of the weight of its support,

[[k]] - wnglgr,]AeS [A] '

Then the nonresonance conditions read

I(K, ®) 0+#£keZ”, (5)

>

A(TKD Ak
where, asusual, o isapositive parameter and A some fixed approximation function
as described in Appendix A. One and the same approximation function is taken here
in both places for ssimplicity, since the generalization is straightforward. Note that
the right hand side of (5) is zero when suppKk is infinite, so this case need not be
excluded explicitly.

Onaninfinitedimensional latticeit now depends on the chosen weight function
whether these nonresonance conditions can be met by some frequency vector » or
not. If the weights are to “light”, then there are none. On the other hand, if they
are too “heavy”, then the components P, have to decay very rapidly with [A]. The
point isto strike a good balance between these two extremes.

Asanillustration, let

the d-dimensional integer lattice. Let S be the spatial structure generated by the
nearest neighbour sets Ay = {j:li —jl,, <1} withi € A. A useful weight



Section 2: The Result

function is given by
[Al =) il
ieA
since it reflects both the size and the location of A. Other choices such as

[A] =ﬁr1qu><|i|, [A] = card A

aretoo “light”, and the small divisor conditions can not be met.

2 The Result
Let A bealattice with aweighted spatia structure S. Let

N=e+ (o, I)

bethe unperturbed, integrable hamiltonian with frequencies w takenfrom aparameter
domain O in R4. Thenature of thisset isquiteirrelevant for our purposes. It suffices
to assume that — after fixing some approximation function A — for some o« > 0

there is a nonempty subset
O, COCRA

of strongly nonresonant frequenciesin the sense of (5). Indeed, theset O may consist

of asingle strongly nonresonant frequency vector.

We consider perturbations H = N + P that arereal analytic in the phase space

variables 6, | on a complex neighbourhood

Drs: [IMO| <1, |l], <S

of thetorus Ty and real analytic in the parameter «» on a complex neighbourhood

Wh: |w—0]|, <h
of thereal parameter set O. The norms are

Ol =SUploil, 111, =Y [ e",

reA AEA

where w > 0 isanother parameter, and the weights at the individual |attice sites are
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defined by
P1=, ip (A
It isimportant to take the minimum over the family S N § in order that the estimates
(21) and (22) come out right.
The perturbation itself is supposed to be given as a spatial series

P = Z Pa(@a, 1 a; @A), (6)

Ae8

where 65 = (0, : A € A) andsimilarly 15 and wa. Itssizeis measured in terms of
the weighted norm

A
IPllmrsh =Y IIPallrsn€™A,
Ae8

where
IPallesh = Y |Pakls, €™

kezZA

This definition refers to the Fourier series expansion Pa = >, Pak€ & whose
coefficients depend on | and . The norm |- |g, isthe sup-norm over |1, <
s and Wy. The triple-bar-norm reflects the idea of treating Fourier and spatial
expansions on exactly the same footing.

The smallness condition of the following theorem is expressed in terms of two
functions ¥, ¥ that are defined on the positive real axis entirely in terms of the
approximation function A and reflect the effect of the small divisorsin solving the
nonlinear problem. See Appendix A for their definition.

Theorem A. Let A bealatticewith a weighted spatial structure 8. Suppose
that P admitsa spatial expansionasin (6), isreal analyticon D, s x Wy, and satisfies
the estimate

-1 oE, h
s P <———— < ¢
™S = () (p) T 25

forsome O < u <m-—wandO0 < p <r/2, where ¢, is an absolute positive
constant. Then there exists a transformation

J. ®r—2p,s/2 x Oy — ‘Dr,s x Wh,

that isreal analytic and symplectic for each « and uniformly continuousin w, such
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that
(N+P)oF=const+ (w, I)+...,

where the dots denote terms of higher order in | . Consequently, the perturbed
systemhasareal analyticinvariant torus of maximal dimension and with a vectorfield
conjugate to w for each frequency vector w in O, . These tori are close of order
s~Y|P|| to thetorus To with respect to thenorm | - |, .

Our proof yields e, = 222, but no effort was undertaken to obtain an “ optimal”
constant.

The next theorem gives a criterion for the existence of strongly nonresonant
frequencies. It is based on growth conditions on the distribution function

No(t) =card{A e S:|Al=n, [A] <t}

forn>1andt > 0.

Recall the definition that a point belongs to the support of a measure w if
w(O) > 0 for every open neighbourhood O of this point. The topology on the
parameter space R isthe topology of uniform convergence.

Theorem B. Supposethere exists a constant Ng and an approximation func-
tion @ such that
0, t <ty

N (t) <
()<{Noq§(t), t> 1,

with a sequence of real numbers t,, satisfying
th > nlog’n

for n large with some exponent o > 1. Then there exists an approximation func-
tion A and a probability measure ;. on the parameter space R4 with support at any
prescribed point so that

;L(RA _ RQ) — O(a).

It follows that O, is not empty for sufficiently small « whenever the set O
contains an interior point.

The hypotheses of this theorem, however, is admittedly somewhat awkward
and abstract. Here is amore handy criterion for the important special case where A
isthe d-dimensional integer lattice Z¢ or a subset thereof.
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NonresonanceCriterion. Suppose A C Z9, andeverysetin § isconnected.
If there exists a constant o > 1 such that

[A] > |Allog” | A| for |A| large
Al < exp( LA for [A] large
=T log” [A] '

where |Al,, = MaXjca |i | , then the conclusion of Theorem B holds.
The proof of thiscriterion is short. By the first hypotheses,
Nh(t) =0 fort < nlog’n, n > ng,
for ng sufficiently large. Letting

{ 0, n<ng
tn =

nlog’n, n=>ng
wethen have N(t) =0fort <t, andal n> 1.

Now let A € 8§ with |A] = n and [A] <t,wheret > tp issufficiently large.
By the second hypotheses, A iscontained intheball B, of radius

r = et/Iog"t

around the origin. The number of lattice points in this ball is |B,| < (2r + 1)9.
Furthermore, the number of all connected sets of cardinality n containing a given
point is smaller than the number of al paths of length 2n starting from the same
point. This number is bounded by (2d)?". Hence,

Nn(t) < (2d)?" | B
< 34(2d)?>"rd
< NoD"®4%t)

for t > tg with

t
oM = eXp<1+ Iog"(l—l—t)) '

Thisholdsforall n > 1 withconstants Np and D depending only onthedimensiond.
Multiplying No by ©9(to) this estimate holds also for 0 < t < to by the
monotonicity of the left hand side. Finally, D" is bounded by a constant multiple of
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O(t,) for dl n, and since N, vanishesfor t < t, anyhow, we may replace the latter
by @(t). Thus,

Nn(t) < No@% (1),  t >ty

foral n > 1 with adifferent constant Ng. Now Theorem B applies, and the criterion
IS proven.

3 Examples
Finite range couplings

Consider an infinite number of harmonic oscillators occupying the sites of an
integer lattice A = Z9 with d > 1. Their frequenciesare assumed to beindependent,
identically distributed random variables such that they may be regarded as parameters
varying over some open domain © in the space R4 endowed with the topology of
uniform convergence. The unperturbed hamiltonian thus reads

N:ani:(w,l).

iezd

We are going to study uniform finite range perturbations of this system: each
oscillator is coupled to a finite number of neighbours, and the coupling law is the
same throughout the lattice. Such systems arise as models of large arrays of weakly
coupled “bedsprings’, or surface layersof atomsdeposited on adisordered crystalline
surface. The reader may refer to the introductory section of [10] for more about the
physical background.

Let usfirst consider nearest neighbour coupling: each oscillator is coupled to
its immediate neighbours through some unharmonic force. The hamiltonian of such
asystemis

H=(a),|>+ZPAi, A={j:lj—ile=1]} (7)

with
Pa = O(1a[%)

uniformly in i with an exponent 1 > 1 to made precise later. The perturbing terms
are assumed to be real analytic on uniform 6, | and « domains.

Of course, T4 x {0} isaninvariant torus of this system, but the point isto find
nontrivial ones. Such tori werefirst constructed by Frohlich, Spencer and Wayne [10]
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by imposing avery strong localization condition, namely

‘d+5

1°~se ™" 550,

with s sufficiently small. A similar result was found independently by Vittot and
Bellissard [36].

We are going to improve these results. To begin with it is convenient to nor-
malize s to somefixed value, say s = 1, by stretching | by thisamount and dividing
the resulting hamiltonian by s. This preserves the symplectic structure and gives the
new hamiltonian

H=(w.1)+e) Pa

with ¢ = s*~1. Inthefollowing, & will be chosen small, and thistranslates back into
asmallness condition on s.

Let S be the spatial structure “generated” by the nearest neighbour sets A; .
Thatis, S istheintersection of all spatial structures containing thosesets. Let [ -] be
any weight function satisfying the hypotheses of the nonresonance criterion. Finaly,
let w > 0, and recall the definitions

I, =) Ihile’™,  [i]= min [A].

ieAe8NS

Asit happens, [i] equalstheweight of the corresponding one-element-set, since SNS
contains all one-point-sets.

Pick any initial position 1° with |1°],, = 1 and expand H in aball of radius
1 around it. By assumption,

[Pl = Crmaxet

T jeA
uniformly in i for somer > 0 and therefore

IPlmes = 3 [P, (€™
i

< C max em[Ai]—Aw[j].

— JeA

Now, if

A > A, = €SSSUp [Ai] > 1, (8)
JeA; [J]
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thenthereare m > w and § > 0 such that Aw > (m+ §)A, and hence Aw[]j] >
(m+48)[A] foramostal i andal j € A;. Consequently,

Pl < C+CDH e Al
i

for some m > w and some § > 0. The infinite sum converges, since

[Ai] > logli|log” logli|

for large |i| by the hypotheses of the nonresonance criterion.

Thus, if A > A, , then the KAM-theorem applies for sufficiently small ¢. For
every frequency vector » in asubset of O of positive measure, there exists a real
analytic invariant torus which is localized like 1.° ~ e [l The measure of the set
of “bad” frequenciesin O isof order ¢ with respect to a large class of probability
measures as described in Lemma 1.

Here are now various choices of weight functions. The example of [10] is
recovered by choosing

[A] = max|i|9+?, §>0
ieA

where |-| = |- |5 . Oneobtains A, = 1 and I° ~ eI with w = 1. Note that
for § < 0 the nonresonance criterion does not apply.
To get around this hyperexponential localization one may choose

(A=) lil,

ieA

for which the nonresonance criterion is checked in amoment. Then 1.0 ~ 7'l at the
expense of having A, = 2d 4+ 1. But this may be further improved on by taking

[Al= ) il

li—Al<t

with some t > 0. Thisindeed defines aweight function for all t > 0, asone easily
verifies. Asthe“thickness’ t increases, thelimit exponent A, goesdownto 1, while
gill 12 ~ el by choosing the parameter w in such a way that w[i] ~ [i| for
large |i|.

Finally, one may indeed take

[A] = Z log” (1 + |i]), y > 1

li—A=<t
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Now the tori are localized like 1° ~ e~!99"lil 'while again 1, | 1 ast increases. —
A somewhat related result was obtained by Vittot [35].

Obviously, the preceding example is not limited to nearest neighbour sets.
Everything works the same if they are replaced by connected neighbouring sets of
arbitrary shape and size as long as the latter is uniformly bounded. On the other
hand, our theory does not seem to encompass short range couplings. These are
perturbations of the form

P=>Y"> Pa. Ar={j:lj—-il=I1}
=

with
Pa, = o(\lA”\; e‘“').

Estimating as above, oneis lead to require that
minAw [j] + ul > m[Aj]
JEA

foramost al i and | with fixed numbers m > w > 0. But this prevents the weight
function to meet the first requirement of the nonresonance criterion, since | Ajj| ~ 19,
unless A isalowed to depend on | .

It remainsto verify the applicability of the nonresonance criterion to our various
choices of weight functions. It suffices to do thisfor the “lightest” example,

[Al=)log A+1i). y>1
ieA
since any “heavier” weight function satisfies its hypotheses a fortiori.
First,let B, ={i :]i| <n}. Then

n
[Ba]l ~ > k% log” (1+ k) ~ n®log”n ~ |By|log” |By| .
k1

where the tilde means that either side is bounded by a constant multiple of the other
side independently of n. Among all sets of the same cardinality, B, has the lowest
weight, s0if [Bny1| > |Al = [Bnl, then

[Al = [Bn] ~ [Bn]log” [Bn] ~ [Allog” | Al.

Secondly, leti € A. Since t/log’t iseventually monotonically increasing, we have
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for |i| sufficiently large and hence [A] sufficiently large no matter how o > 1 is
chosen. It follows that the nonresonance criterion applies.

Arbitrary couplings

The spatial structure of short range couplings consists of connected sets only.
For comparison, consider now the case of arbitrary couplings, where § consists of
all finite subsets of the lattice A = Z9. We claim that here the weight function with

[Al=1+) log’L+i), y>2
icA
satisfies the hypotheses of Theorem B. A related observation was made in [36].
For the proof, let again By, = {i : |i| <m}. Asin the preceding example,
[Bm] ~ |Bmll0g” |Bn|, and By, hasthe lowest weight among all sets with the same
number of elements. It follows that

Nh(t) =0 for t<t,~nlog'n.

Next, let t > 0 be arbitrary, and consider the collection of all sets A with n
elements and weight not bigger than t. Picking any element from A with weight
0<t-—s<t,theremaning n — 1 elements have total weight not bigger than s.
This leads to the estimate

1 t
Nn(t) < - / W(t — S) dNn—l(S),
nJo

where W is any continuous function bounding N; from above. Integrating by parts
and assuming that W(0) = 0O the role of W and N,_; can be interchanged. And
proceeding by induction, we obtain

Nn(t)sn—lI / dW(ty) - - - dW(ty).

St <t
Now let d = 1 for simplicity and choose W(t) = we" — w with u = y~! and a
suitable constant w > 1. Then

n
Np(t) < % f exp(ty + -+t dty ... dth.

ty -t <t
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On the domain of integration, t{" + - - - +t# < N4 (ty +- - - +t,)* < n1=#t*, while
theintegral of dt;'...dt"* over [0,t]" isbounded by t*". Hence,

N un

Nn(t) < exp(n'™“t*) < exp(wt®) exp(n' #t#).

n!

Finally, to eliminate the dependence on n for large n, recall that t > t, ~ nlog”n.
Hence, n ~t,/log" t, <t/log”t fort > t, and so

Lngn < =yl-pw=y—-1>1
n S logt’ oc=y(l-w=y >
This shows that N, (t) is bounded from above by a constant multiple of a fixed
approximation function independently of n asrequired by Theorem B.

This result applies for example to the hamiltonian

H=(o,1)+& Y Rj(l)cos@ —6)),
i,jezd

where more precisely P; dependsonly on |; and I;. If

sup [P (1)] < ce™ov i =miog i
[M,<1

withm > w > 0 and y > 2, then Theorem A applies for sufficiently small ¢, and
there exist invariant tori localized like 1° ~ e~ !9l [35].

Hierarchical systems

Another interesting class of examples is provided by hierarchical systems, as
was pointed out to the author by Jurg Frohlich. At the lowest level they consist of
many unrelated small scale systems. At the next level aweak force couples afew of
them at atimeleading to acollection of unrelated systems at a somewhat larger scale.
Then a weaker force couples afew of those at atime, and so on. The universe with
its hierarchy of solar systems, star clusters, galaxies, clusters of galaxies, and so on
may serve as amodel for thiskind of system.

In terms of spatial structures a hierarchical system § is characterized by the
hierarchical property:

ANB#9% = ACB o BCA

for al A, B in 8. This property has the very pleasant effect that any nonnegative,
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monotone functionon § N 8§ isaweight function on §, since automatically
[AUB] +[ANB] =[A] +[B]

whenever A and B intersect. Thus, the class of weight functions is considerably
enlarged.

For example, let A be a countable collection of points for which a distance
functionisdefined. Let [ A] bezero, if A hasno proper components, otherwiselet [ A]
be the minimal distance between the maximal componentswhich A consistsof. This
isabona fideweight function, if the diameter of each set A inthe structureissmaller
than its distance to any other digoint set in the structure. Moreover, any nonnegative,
monotone increasing function of [A] is also aweight function. It then depends on
how thinly this universe is populated for which functions of [A] the hypotheses of
Theorem B can be verified, and thisin turn determines the admissabl e strength of the
coupling forces as a function of [A]. But for lack of a genuine application we will
not expand this further.

Finite chains of oscillators

The theory of spatial structuresisalso helpful in studying hamiltonian systems
with a finite, but large number of degrees of freedom. The point of interest is the
dependence of the smallness condition of the classical KAM-theorem on that number.
Rigorous results in this direction are due to Vittot [35] and Wayne [37]. There are
also quite anumber of numerical studies of that question which arereferenced intheir
papers.

To have a specific example in mind, consider a chain of N identical, weakly
coupled oscillators with hamiltonian

H =

NI

I2+e)  cos — 641).

N N—1
i=1

Wayne showed, among others, that it sufficesto choose ¢ ~ N~2 to obtain invariant
tori, with an exponent a in the hundreds, whereas the general theory requires ¢ to
depend exponentially on N. The results of Vittot are similar but less comparable,
since heusesdifferent, stronger norms. We are going to recover and improve Wayne's
result.

Let

A=[1, N]CZ,
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the integer interval from 1 to N, and let J be the spatial structure consisting of all
subintervals A of A containing at least two points. As usual, we consider nearly
integrable hamiltonians of the form

H=(w,1)+ ) Pa,

Ael

which depend on the frequencies w as parameters varying over adoman O whose
sizeis assumed to be independent of N. The hamiltonian above is brought into this
form by expanding H inaball |I|; < 1 around every initial position 1° in [1, 2]V,
say, and having w(1°) = 1°. Inthiscase, © = [1, 2]N.

The point is a matching choice of the approximation and weight functions to
determine those « as functions of N for which the set of “good” frequenciesis not
empty. Choosing the weight function

[Al=flA—f, f>2—1

and the approximation function

D) - t N-+1
A(t)—?, D(t) = (1+ m) )

one roughly needs (this estimate is not optimal)

1
N log N

~

to obtain nonresonant frequenciesin O filling a set of positive measure. The details
are given in Appenix E.

Thereis, however, acatch. The ¥ -functions now depend exponentially on N,
and the only way to beat thisis by having the parameters 1« and p sufficiently large.
More precisely, the function ¥; for A isthe same as the function ¥, for D, and

(N+1) /!
4 ) ‘ < 24N/K|
k—1 -

Ul +1) < (

forintegers| by theremark following Lemma7. Hencethereisauniformboundif | >
log N/ logk . Accordingly, if u and p areintegersgreater or equal 1+log N/ log«,
then the ¥ -functions are independent of N .

We thus arrive at the following result. If the weight function [ -] is chosen as
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above and
€0 B log N

1 =
S P = o ’
P le-r2.26+a5n = log N log «

where gq isindependent of N, then thereexist real analyticinvariant tori for frequen-
cies w inaset of positive measurein O. Inparticular, for large N one roughly needs

s Pallosa,sh ~ e tIAl ~ NTEIAL ¢ = f/logk.

This recaptures Wayne's result in [37] about finite dimensional short range interac-
tions.

We apply this result to the chain of weakly coupled oscillators. For A =
[i,i +1],

Pa = 317 +ecosé — 6i11), IPally, /s < &+ e€”.

Since |A| = 2 for dl terms in the given perturbation,

1
=MIPller226+aye = vVE Y IIPallia e €52
\/E |Al=2

< CN%“‘*”R/E

— CN2+(4+f)/|OgK\/E.

Thus, one roughly needs ¢ ~ N~ to apply KAM.

Incidentally, by a slight modification of the general KAM-schemeit sufficesto
have 0 < p < r/b for any fixed b > 1, whence the ‘ 2§ + 4’ may be replaced by
‘b& 4+ 3’ inthe preceding statements. Thisreducesthe power of N to 38, but still this
is certainly not optimal. In fact, numerical experiments seem to indicate that thereis
amost no dependenceon N at all. Those observations, however, may aso be due to
the extreme slowness of the process of Arnold diffusionin nearly integrable systems.

The classical KAM-theorem

The theory of small divisors with spatial structure is a natural extension of the
classical theory of Kolmogorov, Arnold and Moser, and the | atter isrecovered simply
by having no structure at all.

More precisely, let

A=[1n] CZ,
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and let § consist of A alone having zero weight. Then
Drsi MO, <1, [ll1<s,
and the weighted norm of areal analytic perturbation P = P, on D, s reducesto

k
IPllmr.sh, = 1Plesh= D [Pdsne™

kezn

for all m. Moreover, by standard estimates for the Fourier coefficients of analytic
functions, |Px] < e"k|P|,, where the latter stands for the supremum of P over
ImoO|,, < r. It followsthat

—2plk
IPlsn < Y € Pl zsn=coth"o [Pl 2,5nh
kezn

whereas the estimate |P|, o, < [|Pll; s, iStrivial.
Finally, we choose the approximation function

A = A+ A +t/0)7, T>n
and observe that [[K]] = O for al k, hence this term does not matter in the small
divisor conditions. By the estimatesin Appendix E,
a_l,u(Rn —R" < C—Q
“ ~ min(1,t —n)

for the standard gaussian probability measures on R" described in Section 8 with a
universal constant c,, and

8 T
0

by Lemma3for ¥ = ¥;.
Summarizing we obtain the following version of the

KAM-Theorem. Supposethehamiltonian H isa perturbation of the normal
form N = e+ (w, I) thatisreal analyticon D, s x Wy, and satisfies
SIH — Nl gp < a0’ < &
r.sh = X&Q0 = 25
for some 0 < p < r/2, where ¢, isan absolute positive constant and ¢ > n. Then
there exists a real analytic invariant toruswith a vectorfield conjugateto o for every
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frequency vector » in O, , whichis close of order s~1|H — N|| to the unperturbed
torus. Moreover,

(O — 0) = O(a)
with respect to any standard gaussian probability measure © on R".

Note that the small divisors enter only once in the smallness condition via the
expression ap®, which is different from other versions of the KAM-theorem where
thisterm is squared. Thisis due to regarding the frequencies as independent param-
eters thereby decoupling them from the hamiltonian system itself. More technically
speaking, in the linearized problem there is only one small divisor equation to be
solved. Of course, this is not a genuine improvement, since the square is restored
when reducing the traditional versions of this theorem to the one above.

4 Other Applications and Extensions

The theory of spatial structures presented here offers a general mechanism for
keeping track of the interaction of couplings of varying strengths and locations in
nearly integrable hamiltonian systems. Its pivotal ingredient is the effective control
of the Poisson bracket of such hamiltonians. Therefore, this theory is not limited to
extending KAM-theorems to certain infinite dimensional systems. It also helps to
simplify and improve Nekhoroshev type estimates such asin [39] and more generally
any construction of normal forms up to a finite order provided the system exhibits
some sort of spatial structure. In these applicationsonly afinite number of coordinate
changes are performed. This gives the freedom of choosing exponential functions
as approximation functions, which further smplifies the estimates. Likely, even
relatively small systems with oscillations of different time scales may be analyzed
thisway.

In this paper we chose to describe the theory in its simplest form. In particular,
on the w-parameter space we chose the topology of uniform convergence. But for
many applications it is necessary to have an exponentially localized topology of the
same kind as that for the action variables, given by the norm

||, = sup |w; | '™

reA

with a parameter v > 0. This requires some modifications of the small divisor
conditions and of various arguments of the KAM-step. Also, an extra condition on
weighted spatial structures has to be imposed, which we may call coherence: there
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exists an approximation function ® such that

TSR( [A] — Tei,?[)‘] <log®(([A]) for [A] large.

With this provision Theorem A remains valid simply by stipulating
m=>v+w

and defining ¥, intermsof ®YA. Theorem B remains unchanged.
To give an example, consider a lattice of identical harmonic oscillators with
nearest neighbour couplings, described by the hamiltonian

H=3(.1)+) Pa

iezd

with coupling terms asin example (7). The plan isto expand the hamiltonian around
arangeof initial positions | ° and to introduce the associated frequencies w (1°) = |°
as new parameters. But choosing localized positions |1 ° forces the frequencies w to
approach zero at a certain rate, too, whence Theorem A has to be extended to be
applicable here.

It turns out that for instance the weight functions

[Al= ) log’@+li), y>1

li—Al<t

are coherent for all t > 0, and that it suffices to have

, <A, <?2

to do KAM. Here, 1, isdefined by (8) and convergesto 1 ast increasesto infinity.
Hence, if A > 2, thentherearereal analyticinvariant tori localized like 10 ~ e~ 09”11
and filling a set of positive measure. Thisimproves the resultsin [36].

Unfortunately, a similar approach does not seem to work for nonlinear partial
differential equationssuchasthe nonlinear wave equation, becausearbitrary couplings
are involved which are not coherent.
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5 Outline of the Proof

Theorem A is proven by the familiar KAM-method employing a rapidly con-
verging iteration scheme [12,1,19]. At each step of the scheme, a hamiltonian

Hn:Nn+Pn

Isconsidered, which isasmall perturbation of some normal form N,. A transforma-
tion &, isset up so that

Hn S Srn = Nn+l + I:)n-i-l
with another normal form Ny, and amuch smaller error term P, ;. For instance,
[ Prsall < Chll Pall

for some « > 1. Thistransformation consists of a symplectic change of coordinates
@, and a subsequent change ¢, of the parameters  and is found by linearising
the above equation. Repetition of this process |eads to a sequence of transformations
Fo, F1, ... ,whoseinfiniteproduct transformstheinitial hamiltonian Hq intoanormal
form N, up tofirst order.

Here is a more detailed description of this construction. Approximating the
perturbation P in asuitable way we write

H=N+P
=N+R+(P-R),

dropping theindex n to simplify the notation. In particular, R ischosen such that its
spatial expansion is finite, hence all subsequent operations are finite dimensional.

The coordinate transformation @ is written as the time-1-map of the flow XL
of ahamiltonian vectorfield Xg:

® = X?le-

This makes @ symplectic. Moreover, we may expand H o @ = H o XLt with

respect to t at 0 using Taylor’'sformula. Recall that

iz

d
aGOXLz{G,F}OXtF,

the Poisson bracket of G and F evaluated at XL . Thuswe may write
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(N+Ro®=NoXt| .+ RoXkt

|t=1 ‘t:l

1
=N+{N,F}—|—/ (1—t){{N, F}, F}o Xt dt
0

1
—|—R+/ {R, F}o XL dt
0
=N+ R+ {N, F}

1
+/ {(1-t)(N,F}+ R F}oXLdt.
0

The last integral is of quadratic order in R and F and will be part of the new error
term.

The point isto find F such that N + R+ {N, F} = N, isanormal form.
Equivalently, setting N, = N + N, the linear equation

(F,N]+ N =R

has to be solved for F and N, when R is given. Given such a solution, we obtain
A1—t){N,F}+ R=(1—-t)N+tRandhence H o ® = N, + P, with

1
P+:/ {(A—tN +1tR,F}o XL dt + (P - R) o @.
0

Setting up spatial expansionsfor F and N of the same form asthat for R the
linearized equation breaks up into the component equations

dFA+ Na = Ra,

where 0 isthe familiar linear partial differential operator with constant coefficients
on the torus,

Their solution is well-known and straightforward. The operator ad is diagonizable
with eigenfunctions € ¢ and eigenvaluesi (k, ), whichin our case are zero if and
only if k is zero by the nonresonance conditions. It therefore suffices to choose

Na = (Ra),
the mean value of Ra over T#, and to solve uniquely

0Fa = Ra — (Ra), (Fa) =0.
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We obtain

Rak
Fa= 0 ko) 9
A= ) ) 9
k0
suppkC A

where Rp k arethe Fourier coefficients of Ra.
The truncation of P will be chosen so that R isof first order in | . Hence the
sameistrue of each of the N, and so

N =ZNA=é+(v(w), ).
Ac8

It suffices to change parameters by setting
wr = o+ v(w) (10)

to obtain anew normal form N,. = N + N . Thiscompletesonecycleof theiteration.
By the same truncation, F isof first order in I . It followsthat @ = Xt
has the form

iz

6 =U(@;)
| =V () + WO,

where the dependence of al coefficients on » has been suppressed. This map is
composed with the inverse ¢ of the parameter map (10) to obtain F.

Such symplectic transformations form a group under composition. So, if
Fo, F1, ..., Fn belong to this group, then so does F" = Fgo F1 0 --- 0 F, and the
limit transformation & for n — oo.

For the mere existence of aninvariant torusit would actually sufficeto construct
the embedding

9:||:0: {.T()—)j)

This can be done via a new approach introduced by Salamon and Zehnder [32] that
works in configuration space. For the traditional transformation method employed
here, however, it isimportant to have control aso over the normal bundle of the torus
To which istransformed by

ol

TF=—=W. (11)

al,
Thisbundletransformation requires some special careinthe convergence proof below
in Section 7.
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6 The KAM-Step
Before plunging into the details of the KAM-construction we observe that it
suffices to consider some normalized value of «, say

a =2

Indeed, stretching the time scale by the factor 2/« the hamiltonians H and N are
scaled by the same amount, and so are the frequencies . By asimilar scaling of the
action-variables | the radius s may also be normalized to some convenient value.
We will not do this here.

The set up

Consider a hamiltonian of the form

H=N+P, P=) Pa
AeS§

Assumethat P isreal analytic on the complex domain
Drs X Whi |ImbO| <1, |1, <S, lo— 04l <h,

where 0, isaclosed subset of the parameter space R4 consisting of points w that
satisfy

Ik, w) 0+#kez”,

|2
AMKD A(KD

where o = 2. Moreover, assume that for some m > w,
IIH = Nllimr.sh = IPllmrsh <€

is sufficiently small. The precise condition will be given later in the course of the
iteration.

Unless stated otherwise the following estimates are uniform with respect to .
Therefore theindex h isusually dropped.

Truncating the perturbation

Let u and p betwosmall and T alarge positive parameter to be chosen during
theiteration process. The Fourier series of the A-component P, of the perturbation
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Istruncated at order (A) which isthe smallest nonnegative number satisfying
w[Al+p(A) = T. (12)

Thus, thelarger [ A] themore Fourier coefficientsarediscarded. If [ A] issufficiently
large the whole A-component is dropped. The upshot is that for the remaining
perturbation Q one has

~T
P = Qllm—pr—p,s < € MPllmr,s-
T —p

Next, each Fourier coefficient of Q is linearized with respect to y at the origin.
Denoting the result of this truncation processby R we obtain

1P = Rl p.05 < (e iR 1_a) 1Pl (13)

forO<u<m,0<p<rand0<a< 1. Moreover, the estimate
IRMmr.s < 2P llmr.s

obviously holds.

Extending the small divisor estimate
We claim that, if

_ 1
h < min (14)
Acs A([A] - (A)A((A))

with (A) asin the previous section, then the estimates

(K, @) ullkl + o1kl <T, k#0

| > e,
A(TKD ACKD

hold uniformly in @ on the complex neighbourhood W, of the set O, .

The proof is simple. Given w in Wy, there exists an w, in O, such that
o — wy|o < h. Given k there existsan A in § containing the support of k such
that [[K]] = [A]. It followsthat |k| < (A) and hence

|<k’ CU) - (ka w*)l = |k|1 |w - C‘)>|<|oo =< <A>h

< 1 < 1
= ACADAAY ~ AQKDA(K)
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by the monotonicity of A. The claim follows from the estimate for (k, w,) .

Solving the linearized equation

The linearized equation {F, N} + N = R is broken up into its spatial compo-
nents, 0 Fa+ NA = Ra,andsolvedfor Fa and N asdescribedin Section5. Clearly,
Na is given by the mean value of Ra over TA, and ||Nall, s < |Rall, s Hence,

INTlm,rs < Il Rllm,r,s

by putting pieces together.
Thenormalized Fourier seriesexpansion of Fa isgivenby (9). By theextended
small divisor estimate,

IFAlr—ps <> A[KDA(K]) |Rak| ek
k
< A([ADIo(p)lIRall s
where I'o(p) = sup;-¢ A(t)e*t. Similarly, for the convenience of later estimates,

S IFanl, o= > AQKD - 1Kl ACKD) |Ra| €%
k

AEA
< A[ADI1(0)IRAlls s,

where I'1(p) = sup,.q (1 +t) A(t)e *". Putting the spatial components together,
IF lim—per—ps < Y ACAD To(o) IRl 6™
A

< Io() To(0) I Rlllm.r.s

and
Y Pl —ps < oG T IRy
A

for 0 < u < m.
Inview of theestimate I'(p) < pl(p) InLemma6 we may summarize these
estimates by writing

P Nnzpir—pss Y IFo s —ps < Tl o lIRMms: (15)
A

with I', = I'o(n) and I, = I'(p).
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The derivatives of F

On the domain D;_, s we obtain the estimate

IFoly = ) [Fo e <" [IFas,, &
A

A Asa

=2 %l s
A

Similarly, on the domain D, _, s> we obtain the estimate

2
IFileo = SUp|Fi, | < sup < 3 IFal s

Asx

2

< =Y IIFall—, €™ (16)
S A
2

< g”“:mw,r—p,S'

Requiring that
m—p>w (17)

and recalling the estimates for F, Fy we thus have

1 2 1 £
P IF oo s gIFeIw <2, T, s IRMmr.s <4Fqu§

uniformly on the domain D, _, 5/>.
These estimates are expressed more conveniently by means of aweighted phase
space norm. Let
10, D]y =maX (18], I11,)., W =diag(p 14,257 1,).

Then the above estimates are equivalent to

\WXg|p <4, T,E, E

On ‘Dr —,O,S/Z .
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Transforming the coordinates

The |W - | -distance of the domain
Dy = ®r—2p,s/4 C Dy = Dr—,a,s/2

to the boundary of D, isexactly one half. Hence, if 167, 1,E < 1, then [WXg|
islessthan or equal one fourth on D, and consequently

Xt Dp— Da, O<t<l1

In particular, thetime-1-map @ isasymplectic map from Dy, into D4, for which the
estimate

IW(® —id)|p.p, <4, T,E (18)

holds.

Infact, under the present smallness condition on E this statement holdsaswell
for thelarger domain D, _, «s/a C D, instead of Dy, where k = 3/2. The [W - |5 -
distance of its boundary to Dy, is exactly one fourth. Applying the general Cauchy
inequality of Appendix B to the last estimate it follows that in addition,

|W(De® — 1YW~ < 16I,T,E,

1|f]:’;®b

where | - |5 denotes the operator norm induced by | - | . Finally, if we require
AL, [L,E <o <1/2

then
X}:: Dﬂ = ®r—2p,as/2 - j)ot = ‘Dr—p,oes’ 0 <t< 1

by the same arguments as before.

Transforming the frequencies

Toput N. = N + N into normal form, the frequency parameters are trans-
formed by setting w, = w + v(w). Proceeding just asin (16) the estimate for N
impliesthat |v|,, < 2E uniformly on W},. Refering to Lemma 11 it follows that for

E<h/8 (19)
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themap id + v hasareal analytic inverse

¢: Wp =Wha — Wa = Wh)2,

satisfying
. h|oep
—idl, -=-|—-1] <2E 20
lo —idl 4“ ™" = (20)
uniformly on 'Wy,.
The Poisson bracket

The estimate of the new error term hinges on an estimate for the Poi sson bracket
{Fa G} = (Fea G|> - <F| ) GQ)

interms of the norm ||| - ||| .
Consider the term (F|, Gy). Giventhat F and G have a spatial expansion
over the same structure § we have

(F1.Gg) = > Fi,Gy,
A

(pe)(Ee)

A Asi Bsa
=Y > FaiGay,
A.B AcANB
= Z (Fa1. Ggo)-
AB
ANBAY

Theterm (Fa,, Gg) “lives’ on AU B which belongsto $ by the definition of a
spatia structure. Hence, (F,, Gy) has the same structure.

One easily verifiesthat the norm | - || is multiplicative. Moreover, the “ampli-
fied” Cauchy inequalities

1
2 [IHall, o = suplkie " IHIs < o IHlks

reC
and
ewl] w[C]
Sup HHUHrS—a = Sup—”H“r,s = ”H”r,s (21)
reC ’ reC O o
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holdfor C in SNS§ inview of thedefinition of [1] no matter on which set thefunction
H actualy “lives’. It follows that

[(Far. Geall e = 2 IFanll_lGoal_

reANB
< s F G
=splFal Yol e

1
< %ew[AﬂB]HFA”r—p,S“GB“r’S’

where |- |- = |l llr—,.s—» - Now recall that
[AUB]+[ANB] <[A]+[B].
Thus, for v > w, we obtain

CF1, Gollllyr—p.so < Z 1{Fa.1, Gg.o)| U[AUB]

r—p,s—o

IA
It
\H\UJ

e ABI AR EL | (IGallrs

O ‘AB
ANB()

1
= oo — > eM)Fal_, e Gel s
A,B

= %l”Fl“v,r—p,SmGl”v,r,S'

L

Theterm (Fy, G,) ishandled similarly. However, in order to avoid an unnec-
essary shrinking of the 6 -domain and take advantage of the estimate of Fy in (15),
one may vary the argument to obtain

I1(Fo. Gi)llyr—pso < |||G|||vrsZH|F94A

A

v,r—p,s’

Hence, if

P IF s s ZHIFelevr s =M

and v > w, then
2M
I{F, GHilyr—p.s—o =< 7IIIGIIIM,S (23)

for 0 <o < s.
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Estimating the new error term

The new error term is
1
P+=/ {R,F}oXLdt+ (P —R)o Xt,
0
where R = (1 —t)N + tR. By Lemma 10 and estimate (15),

G o XEllno i —2pasr2 < 2MCMmpir—pas: 0=t

provided that

ACol, [,E <a < (24)

NI =

where Cp = 8 isthe constant of Lemma 10. Hence, with this assumption,

1
1Pl 202 = | 2HRe Flln gl
0

+ 2P = Rillm—p,r—p,as-
Obvioudly, (IR lllmr.s < 2¢ for 0 <t < 1 by theestimatesfor N and R andtherefore

I{Res Fhlllm—yir—p.es < 8T, Ee

by theestimatesfor F, F, and (23) with o = s/2. Combined with (13) we altogether
obtain

Py —2p.asr2 < 161, Ee + 27T e + da®e (25)

for the new error term.

7 Iteration and Conver gence
Heuristic considerations

Choosing e T ~ I',E and o? ~ I',E with I, ~ I, T, al termsin the error
estimate (25) are approximately of the same size so that ¢, ~ I',Ee. Dividing by
S, ~ as,

sr  LE® ry2ge,
s, o
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That is,

E, ~I*'E", k=

NI W

This estimate is iterated with small divisor functions I < I < ... inplaceof I,
arising from nonincreasing sequences o > p1 > --->0and pg > p1 > --- > 0.
After n steps,

En < HF(K D" 1 (1_[ FK” EO) ,

where
Kk —1
Kv+1'

K, =

With anappropriatechoiceof the i1, and p, , theinfiniteproduct of the I converges
to a constant multiple of ¥o(u)W¥1(p) which by hypothesesisfinite. Thus, if Eg is
sufficiently small, then the E,, concerge to zero exponentially fast.

The actual choice of the I, has to take into account an important constraint.
By comparison with (28) condition (14) turns out to be tantamount to

h < or — <

I',E r E
- r I, h’

Since E/h must converge to zero to make the iteration convergent, I"/I, must
converge to zero.

The iterative construction

Leta=13,b=4,c=5,d=8and e=22. The choice of these integer
constants will be motivated later in the course of the proof of the iterative lemma.
Given0 < u <m-—w and 0 < p < r/2 there exist sequences o > uy >
->0and pg > p1 > --- > 0 such that
0.¢]
Wo(u¥a(p) = [ | e

v=0

with

o0 o0
dDwe=p. Y py=p
v=0 v=0
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where I',, = I'o(w,) and I, = I'1(p,). Fix such sequences, and for n > 0 set

n-1
Iy = 2n+aFuann, On = 1_[ FvKV’ En = (O EO)Kn )
v=0

where ®¢ = 1. Furthermore, set

n—1 n—1
M=M= @, TIh=r-2> p,
v=0 v=0
n—-1 o
=s| |3, h, = 2"*°E,,,

S ]1 5 n n
where o? = 4 °TLE,. Thenmy, | m—w, r,  r —2p and s, | 0, h, | 0. These
sequences define the complex domains

Dn = 'Drn,sn, Wn = Whn~
Finally, we introduce an extended phase space norm,
10, 1, @)y =max (10|, 1, @),
and the corresponding weight matrices,
W, = diag (o M4, 25,4, hytla)
Then we can state the iterative lemma.

Iterative Lemma. Suppose that

1 oEy h
S H—-N <— =< —,
||| |||m,r,s,h = 'I’o(M)Wl(/O) — ¢

where @ = 2 and ¢, = 2=€. Then for each n > 0 there exists a normal form N,
and a real analytic transformation

9"“:9’00---09’”_1: DnXWn—>90XWO
of the form described in Section 5, which is symplectic for each w, such that

S H[H o F" — Ny < En. (26)

Mn,M,S, e —
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Moreover,

|Wo (F™ — F) |5 < 4max (2" "I} En, En/hy)

and

|TFH —TF o Fy| < 2> "ILE,

on Dpi1 X Whyi1, where T isdefinedin (11), and | - |,, also denotes the operator
norminduced by |- |, .

In components the weighted operator norm of W = TJ more explicitly reads

|W|w — SJp Z |W}\,u,| ew([)‘]*[ll]).
HEA jen
Auxiliary inequalities

Before giving the proof of the lemma we collect some useful facts. The «,
satisfy the identities

> > =t
v:l, v —
v:OK v:OUK k=1

This and the monotonicity of the I" -function imply that

n

Fn — 1_[ FnKvKn < (1_[ FvKu) .
v=n v=n
Together with the definition of E,, we obtain the estimate
I En < (l_[ FVK“ E0> = (22+aq/ol1’1 E())Kn . (27)
v=0

Moreover, I'“*~1Ef = Ep,1 by astraightforward calculation.
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Proof of the lemma

The lemmaiis proven by induction. Choosing F° = id and

oEy
Eo=—"———,
Yo(n)¥1(p)

thereis nothing to prove for n = 0. Just observe that hg < h by the very definition
of ho and Eo.

Solet n > 0. Toapply theKAM-stepto H, = HoJF" and N, weneedto verify
its assumptions (14), (17), (19) and (24). Clearly, m, — un, > w by construction,
and E, < h,/8 inview of the definition of h, and ¢ > 3, so the second and third
requirements are met. Taking sgquares, the fourth requirement is equivalent to

A NCEM2E2 < 47PILE, < 47
Thisholdsfor al n > 0, since Cy = 8,
Fn En < 23+a—e

by (27)anda>b+2,b>0,e>a+09.
As to the first requirement, define T, by e ™ = 279}, E,, and subsequently
(-) asin(12). For arbitrary A in § with (A) > 0 we then have

1 g Pn(A) g=in[Al
(ANA(ANAAD — (AA(A)e A - A(A]e A
e—Tn 2—d1-vn En

> —
B FMn F,On 2_r]_a[‘n

(28)

— 2n+a—d En > hn’

since a > ¢ + d. This estimate holds even more when (A) = 0. Hence, aso
requirement (14) is satisfied.

The KAM-construction now provides anormal form Ny 1, a coordinate trans-
formation @, and a parameter transformation ¢,. By the definition of r, and s,
@, maps Dy, 1 into Dy, while ¢, maps Wy,; into Wy, since

hn+1 _ 2En+1 _ Z(Fn En)K_l < 21+(3+a—e)/2 < }

hn o En 4

inview of (27) and e > a + 9. Setting

3"”+1=3'~n03rn, Fn = Pnopn,
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we obtain a transformation ™+ from D11 x Whit into Do x Wy. For the new
error term

I:)n-i-l =H Offrm_l - Nn+1 = Hj O:}Fn - Nn+1
we obtain

I Prsalling < 1677, I, Enen + 26~ ey + doien
< (24—a 4+ 21—d + 22—2b) I-vn Ensn-

Dividing by sy.1 = an$,/2 thisyields

Spiall Pagalllngy < 240 (242 + 2079 4 22°%) [ 1ES
= (a0 4 2200 L D) By

E EI’H—l’

sncea>b+7,b>4andd>b+4.
To prove thefirst of the estimates, write

|Wo (F™ = F)| ., = [Wo (F" o Fn — F")|

n+1 n+1
|W0ngn v ‘Wn (H:’n Id)|n+1,
where |- [, = [ 15.p_w,,» and D denotes differentiation with respect to (0, |, w).

By the estimatesfor @ and ¢ and the definition of 17,

}V_Vn (Fn — id)‘n-i—l = max (|Wn (Pn —id)]p, hr:l lon — id|oo)
ax (274 "I En, 2En/ hn) .

It remainsto show that thefirst factor isbounded by 2. By theinductive construction,
Fn :%o---o"fn_l,and

|W,DF W,y
< max (|W, D@, W, |, + hyIW,00@, |5 o0, 1909u]00 )

<max (142> "I,E,, 1+ 8E,/h,)
<14 23—0—1)

by (18) and (20). Since the weights of W;* do not decrease as v decreases, and
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since ¢ > 5, weobtain

n-1
[ViDT™V |, < [ [We BTN,
v=0
<[[]@+2>") =<2
v=0

To prove the second estimate, observe that
TI =TI 0T, - T,
since 6 and w are transformed independently of the | -coordinate. It follows that
|TF —TF"o S”n«w <|Td"o "fn“wIT?n — Iy
uniformly on D1 x Wy 1. By (18) and the definition of 17,
ITFn = I, < [Wa (D®y — D W, |, < 272 "LE,,
and by a standard telescoping argument as above, |TF" o Fy],, < 2. Thiscompletes

the proof of the iterative lemma.

Convergence

By the estimates of the iterative lemma the 3" and subsequently the T
converge uniformly on

mgn X Wn = D* x Oy, ‘D* = Dr—2p,0

n>0

to mappings &, and TF, that arereal analyticin 6 and uniformly continuousin .
Moreover,

_ _ 1
on D, x O, by the usua telescoping argument.
But by construction, the " are affine linear in each fiber over T4 x O,.

Therefore they indeed converge uniformly on any domain Dy _5, » x O, witho > 0
toamap F, that isrea analytic and symplectic for each w. In particular,

?*: ®r—2p,3/2 X O* —> ‘DT,S X Wh
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by piecing together the above estimates.
Going to the limit in (26) and using Cauchy’s inequality we finally obtain

HoJ,=e+ (o, 1)+....

This completes the proof of Theorem A.

Estimates

Theschemesofar providesonly avery crudeestimateof F, sincetheactual size
of the perturbation is not taken into account in the estimates of the iterative lemma.
But nothing changes when all inequalities are scaled down by the factor ¢/E < 1,
where

oEy
q’u lI’p .

-1
e=5S "fIH — N”hmn&hff E=

It follows that
— . I
‘VW)(S; —‘|d)}? f;ig

uniformly on Dy _5, s/2 x O,.

8 The Measure Estimate

In this section the proof of Theorem B is given.
The set of all illegitimate frequencies in the entire frequency space R4 for a
given parameter value « is

R*-R} = | ] Ru@),
0#£kezZA

where

B 4. L
Ric() = {w €R™ 1k @)l < A(IKD A(Ik]) }

are the individual open resonance zones. The first step is to design a probability
measure u that gives a useful estimate of the size of these zones.

Lemma 1. Under the hypotheses of Theorem B there exists a probability
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measure n on R4 with support at any prescribed point such that

1+ K]
@R = S AGKD

forall 0 £k e Z4.

Proof. We construct a measure with support at the origin. Aswe will see the
pertaining estimates are not affected by translations of this measure, so its support
may be shifted to any prescribed point.

Let

do (x) = 1 e 72 dx

V2n

be the standard gaussian measure on the real line with mean zero and variance one,
and set

du(w) = [ aido () = ]_[ —axwf/zdwk

rEA AGA

with scale factors a, = 1+ [A]. The measure of the resonance zonesthenis

n(Re) = f [[ado () = / [ [ do (@),

Re rLEA LRy reA

where L, isthe unbounded linear operator mapping w;, into a; w, , and

LR =1 o: (LK, L}
“ {” (Lake ol < S agn

Asin thefinite dimensional case, thisyields

1 . 1
Lkl AKDA(KD

a (R < ”

where || - || denotes the euclidean length. The leading factor is bounded by ||k||~*
max;ck &, with K = suppk. Since

e = max, g 1A < i, (A =KD

we indeed obtain a dightly better result than stated. Obviously, this estimate is not
worsened by any translation of the measure .
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To study the support of w, let Q,:|w|,, < ¢ beabass of neighbourhoods of
the origin. Clearly,

w(Qo =[] / a;dor (@)

AEA
e X72dx
AeA VZ” v/—aw
=1 (1 «/—2/nf —X/de>
AEA
= ] (1- %)
AEA

in view of the estimate
o 2 2
N/2/:1‘/ e X7?dx < e N2
h

for h > 0. Proceeding exactly asin the proof of the next lemmaand letting § = £%/2
we now have the very crude estimate

Ze—afa < Z A e—[A]26

reA Ae8
<>n (Nn(O) +/ e‘tz‘SdNn(t)) <00
n=1 0

for every § > 0. This suffices to show that £ (Q.) > O for al ¢ > 0, whence the
measure p has support at the origin. |

Fromnow onitisconvenient to choose different approximation functionsfor |K|
and [K]] inthe definition of the resonance zones. Replacing thelatter by (1+t)A(t),
which is again an approximation function, we obtain

a‘lM(R“ — Ré}) < Z a (R

kezA

= 2 20D AGK) A([[k]])A(Ikl)

kezA

Z<A([A]) 2 ﬁ)

AcS keZA
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= i( 2 A([lAD)(Z A<llk|>)

n=1 MAeS§, |Al=n kezZ"

Thusthe sum is broken up with respect to the cardinality and the weight of the spatial
components of 8. Each of these factorsis now studied separately.

Lemma?2. Under the hypothesesof TheoremB, there existsan approximation
function A for every given approximation function ® such that

1 2No
Z = ; n>1
acéTAa—n ATAD ~ O(th)

Proof. Inview of the definition of the distribution function N,, and the mono-
tonicity of approximation functions the sum in question may be written as a Stieltjes
integral:

1 : 2\ Nn(ty+1) — Na(ty)
= inf N,(0) +
AeS,Z:N:n A([A]) b ,,2::0 Aty)

> dNp(t)
- Nn 0 )
<>+/O v

where the infimum istaken over al partitions0 =ty < t; < t, < ... of the positive
real axis. Integrating by parts,

/00 dNn(t) _ Np() +/°° N 310940
0 0

A AWM |, A(t)
o dlog A(t)
= —Nn(0 Nn(t) —— =

( >+A CESs

for every sufficiently “strong” approximation function A. In particular, for
A(t) = O()P?(1)

we have dlog A(t) < 2dlog® (1)@ (t), so that together with N, (t) < No® (1),

/O" NL () dlog A(t) - 2No/00 dlog® )@ (1) _ 2No ’
tn A(t) tn OM)P(1) O (th) P (tn)

which is even better than our clam. 1
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Lemma 3.

Z 1 SZ”fOO (n—i—t) dIogA(t)’
A(IK]) 0 n A(t)

kezn

provided that t"/A(t) - 0 ast — oo.

Proof. LetV,(t) =cad{k € N": |k| <t}. Proceeding exactly asinthelast

proof we have
1 1
— < " -
kEZZ; A(IK]) kZN A(IK])

and
1 2 Vin(tyr1) — Vin(t,
Z _inf 14+ n(ty+1) n(ty)
S AKD = A(ty)
* dVh(t) o0 dlog A(t)
- 1+/ :/ Vht) ——=
o AD T Jo T AWM
by partial integration. The upper boundary term vanishes by our assumption on the
function A.
We claim that

Vi (t) = ([n:t]) - (n:t)

foradl n > 1andt > 0, where [n + t] denotes the largest integer not bigger than
n+t. Thiswill prove the lemma.
For the proof let t = | beaninteger. For n =1,

141
v1(|)=1+|=( J{)

so the equality is correct in this case. Proceeding by induction,

! L /n+k n+1+1
Vaia(h) = Vh(K) = ( )Z( )
1 kXZ; Z n n+1

k=0

by a well-known identity for binomial coefficients. Thus the identity holds for all
n > 1 and integer values of t. The general statement follows from the fact that V,
isconstant on every interval | <t <1+ 1.1

The estimate of Lemma 3 is of arather general nature. Thisis now specialized
for a certain class of approximation functionsin away that suits our needs.
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Lemmad4. Thereareapproximation functions A such that

Z 1 < Knloglogn
Ak —

kezn
for all sufficiently large n with some constant K .
Of course, this also gives a bound for all small n, since the left hand side is
monotonically increasing with n.

Proof. Fort <n,

<n+t> - <2n> _ (2n)! -
n /—\n (nhH2 —

for al n > 1 by well known estimates for the factorial function. Hence,

/” (n+t> dlog A(t) g f"o dlog A(t) g
o Un Aty o av T

for every approximation function A. So this part of the integral is aright under all
circumstances.
Now consider t > n, where

n+t 1 2"
= —(t+1...t+n < —t".
(n) n!(+) (+)_n!

Let ¢ begivenby ¢(s) = log?s, and define A by stipulating that t — s = log A(t)

istheinversefunction of s+~ t = sg(s), at least for large t and s respectively. One
easily verifiesthat this gives rise to an approximation function. Since

Sp(S)

w* (o)
=——¢| < ]=n
nem @) @(n)

by the monotonicity of ¢, the change of variables formulayields

f‘” (n+t> dlog A(t) - 2_” °°tn dlog A(t)
. n Aty  ~onlJ, A(t)

[A

2n o0
— f s"p"(s)e >ds (29)
nt Jg
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with s, = n/gp(n). Now, for al large n and s > s,

loge(s,)  4loglogn
— 2 hn —
@(s) =log°s < s™, hn = logs, < logn

Thus, for all large n,

/00 <n+t> dlog A(t) - 2 OOs”*”h“e‘Sds
n n At) T nlJg

n
S ﬁ(n + nhn)n—i-nhn—i-l

__ »n AN Nhp+1
=2"A;nT

with A, = (1 + hn)”hn*%. The final estimate follows, since A, - 1asn — oo
and nh,logn = 4nloglogn. 1

There is nothing special about our choice of the function ¢ in the last proof.
Indeed, any nonnegative function ¢ satisfying

* ds
(s) 00 a85S— 00, f — <0
i sp(9)
gives rise to an approximation function A by stipulating that t — s = log A(t) is
the inverse function of s — t = sp(s), and vice versa. This provides an alternate
waly of characterizing approximation functions. The argument of the proof appliesto
every such function which in addition satisfies the monotonicity condition

log¢(s)
logs

O as S — o0,

giving abound K"%9¢™ for the sum in question.

Nothing is gained, however, from such greater generality. For, in any event we
have ¢(s) > logs asymptotically, so that in (29) already the integral around s = n
yields abound of the order K"'°9'%9n for al| sufficiently large n.

Summarizing all our estimates so far we arrive at

a_lu(RA - R§> =< i( ) A([lA]))<Z ﬁ)

n=1 \Ae8, |Al=n kezn

0 Knloglogn

§C+CZW

N=Ng
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with some constant C and ng so largethat t, > nlog’n for n > ng by hypotheses.
Here we are still free to choose a suitable approximation function ® , and choosing

t > e

t
o) = exp (Iogt log® Iogt) ’

the infinite sum does converge. Thus there are approximation functions such that
o tu (RA - Ré‘) < oo.

This proves Theorem B.

A Approximation Functions

In[29] Rissmann introduced the notion of an approximation functioninorder to
characterize alarge class of small divisorsto whichthe KAM procedureisapplicable.
A similar characterization was aready used by Brjuno [6] in hisextension of Siegel’s
famous result on the linearization of complex mappings in the plane. Incidentally,
those results do not rely on an iteration technique but on an ingenious application of
the majorant method. See also [25] for a brief exposition of this method.

A nondecreasing function A:[0, co) — [1, co) is caled an approximation
function, if

'OgtA(t) N0  0<t— oo (30)
and
/ 'ogtf(t) dt < co. (31)

In addition, the normalization A(0) = 1 isimposed for definiteness.

Obviously, any positive power of an approximation function is again an ap-
proximation function. So isthe product of two such functions.

Given a characterization of small divisorsin terms of an approximation func-
tion A their effect in aperturbation problem is described by two functions I'yx and ¥
defined on the positive real axisintermsof A. Fork >0and 1 < « < 2,

Ti(p) = sup (1 + )X A(t)e "
t>0

and



46  Appendix A: Approximation Functions

(p) = inf]"!)rk(pv)”v, o = fcﬂl

wheretheinfimum istaken over all sequences pp > p1 > --- > 0 suchthat po+ p1+
- < 0. The parameter « isdifferent for different kinds of small divisor problems.

Inour case, k = 3/2.

Evidently, if A is an approximation function, then so is (1 + t)*A for any
k > 0. We may therefore restrict our attention to the case k = 0, writing I" and ¥
for Iy and ¥y respectively.

The supremum in the definition of I" is attained and finite in view of condi-
tion (30). Theinfinite product in the definition of ¥ islower semi-continuous when
considered as a function on the set of sequences over which the infimum is taken
endowed with the topology of pointwise convergence. Consequently, theinfimum is
aso attained. For every p > 0, there exists a sequence pg > p; > --- > 0 whose
sum is not bigger than p such that

wip)=[]rwene.
v=0

Indeed, p§ + p; + --- = p, for otherwise ¥ could be further minimized.
Still, ¥ may be infinite for some p > 0. The following lemma which is
essentialy due to Rissmann [29] rules that out.

Lemmab5. Thefunction ¥ isfinitefor all p > 0. Specifically, if

1 * log A(t)
dt
IogK/T t2 =p

then ¥ (p) < e<=DrT |
Proof. Let§ =logA and
tv = KU+1T, Py = S(tv)/tv

for v > 0. By the monotonicity hypothesis (30) we have pg > p; > --- > 0 and

> > 5(ty) 1 foo s(t)
) < dv < dt < p.
;p _/ t, U_Iog/c ;e o =f

-1

Hence, we may estimate ¥ (p) with respect to this particular sequence. Since §(t) —
ot < 0fort >t, again by monotonicity, the supremum of §(t) — p,t is attained
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ontheinterval [0, t,] and thus smaller than §(t,). It follows that

F(IOI)) — wp ea(t)_lout < ea(tv) — e,ovtv
t>0

by the definition of p, and hence
W(p) < HeKuputv < e(K—l)PT’
v=0

sincek,t, =k —DT. I

It isconvenient to impose amild growth condition on approximation functions.
We call A sufficiently increasing, if A isabsolutely continuous with

gIo A(t)>i
gt 94 =97

for aimost every t > 0. Without saying so explicitly, al our approximation functions
are assumed to be sufficiently increasing.

Lemma®. If A issufficiently increasing, then I'h(p) < p*Ik(p) for k > 0.

Proof. Agan,letd =1logA.If p < - then
. gan, =100 A. p_1+t,

i((3(t)— t)>18(t)—i>0
dt P = Gt 14t -

It follows that €®—*! attains its supremum at some point t, where the inequality
p(1+t,) > 1 holds. Consequently,

Io(p) = At)e™ < pXA +tokAt)e ™™ < pkIk(p),

as we wanted to show. I

Typical approximation functions are
D (1+t/m", n>1,
(2) exp(t®/a), O<a <1,

t
= eXp(1+|ogV(1+t)>’ y>1

where n need not be an integer. They are also sufficiently increasing.
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Lemma?7. For example (1),

Y < 1Y
(P)_(%> )

A . -1
with o = min(p, 1) and § = KT For example (2),

1 1 a/(l-a)
V(p) < exp 21092 \5p

with § = (1 — a)(k — 1)log2. And for example (3),

1 1/(y-1
Y(p) < exp ((K —Dp exp ((%) ))

with § = (y — 1)log«.

Proof. For thefirst example, one easily finds I"(p) < p~" by distinguishing
thecases p < 1 and p > 1. Choosing the sequence p, = «, 0 and recalling that

o0 o0 1
;szl, §VKVZK—1’

we then obtain

> 1 1 1 /DN ]
W(P)SH nKv:A_l_[K‘E]Ku:<K_1> ﬁ

v:O'OV

1 u+1
KK/(K—].) — (1+ _)
M

the estimate follows as claimed.

Considering the second example, a straightforward calculation shows that
I'(p) = exp(p~¥/a) with @ = «/1 — «. Choosing the geometric sequence
oy = kvp, Where &, isdefined analogously to «, using ¥ = «1~% we obtain

Since

u=1/(k—1)

o0

00 K, 1 Ky
1/ ex — | =X - —
= Q p<5é'58‘p”> p<&p°‘ ZES‘)

v=0
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with
i Vo k-1 _ k—1
v=0 Iz\? B (k — 1)&(1{12_5‘ -1 o (Kl—a _ 1)1/(1—oz) .
Since
k1 1> @A —a)logk > (1—a)(k —1)log2

for 0 <o <land1 <k < 2, thelast term is bounded from above by one over

(1 — a)log2)? 1k — 1)¢, which gives the desired result.
Asto the third example, we follow Riissmann and apply Lemma 5. We have

/OO log A(t) dt — /OO dt
T ~Jr t@+log” (1+1))
1

t2
/00 dt
< = .
~Jr (y —Dlog 1T

tlog”t

Choosing T so that
1 1
log 1 T=—"" .=,
(y —Dlogx p
the hypothesis of thislemmais satisfied, and the estimate follows. 1

The result for the first example may berefinedfor p > 1. Let p =1 + p with
aninteger | > 0and 0 < p < 1. Choosing p, = 1 for 0 < v < | and otherwise

optimal with respect to o, you get
w(p) < [[ e =] o) =w @Y.
v=l v=0
Hence, for the first example one has more generally

K — 1 n/l(l _

Thiscaseisof interest in finite dimensional problemswhere the perturbation consists

of entire functions such asin [39].
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B  The Cauchy Inequality

Let A and B be two complex Banach spaces with norms |- |4 and | - |g, and
let F bean analytic map from an open subset of A into B. Thefirst derivative d, F
of F a v isalinear map from A into B, and

d,F(u
10, Flg = max 2 (W8,
’ w0 |ula

isitsinduced operator norm.

Lemma 8 (Generalized Cauchy Inequality). Let F be an analytic map
from the open ball of radius r around v in A into B suchthat |F|g < M on this

ball. Then
M
|d,Flg.a < s

Proof. Letuz£0in A. Then f(z) = F(v+ zu) isan anaytic map from the
complex disc |z] < r/|u| in C into B that isuniformly bounded by M. Hence

M
do f g = |d,F(U)|g < r [u] A

by the usual Cauchy inequality. The above statement follows, since u # 0 was
arbitrary. 1

The statement of the lemma is particularly transparent, when F is a complex
valued function. Then d, F isan element in the dual space A* to A, and theinduced
operator normisthenorm |- |« dua to |- |5. So, for instance, if F isbounded in
absolute value by M on the balls

|v|oo’ |U|2, |U|1 < T,

then

M
|doF |y, IdoFlz, [doFle < s

respectively in both finite and infinite dimensional settings.
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C Poisson Bracket and Transformation

Unlike the familiar sup-norm the weighted norm of afunction is very sensitive
to coordinate transformations. Fortunately, we only need to consider canonical trans-
formations that are close to the identity. The estimate below is therefore stated with
our specific application in mind.

First we need an estimate of the norm of the Poisson bracket of two functions
that is more general than the one stated in the KAM-step.

Lemma9. Supposethat for some v > w,
26 M Moo D M1Fo ooy = M-
A

Then

1 1 00
F.Glyrew<(=4—=— P YMyay,
IEF, GHlvr—p.s <a+so—s+a e,a) IGIlly.r.s

forO<p<r,0<o<swiths—oc <sgandr —p <rg— pp.

Proof. Proceeding just asin the KAM-step we have

1 1
e B FAllr— po.s IG s

Far Gooll oo = oo o

fors—o < s, r—p <rg—poand,of course, 0 < p <r and0 < o < s.
Consequently,

1 00
- — MGl s

F,G v.r— —0—57
CF, Godlllur—p.s S%—S+o0 e

Similarly,

1
{Fas. Gell,_, s 0 < ;ew[AmB]llGBHr,sZ 1F a6l o sy
AEA

and consequently

[A

1{Fo, GiMllor—p.s—o

1 v
NGl XAZ > e Fag s

reA
1

< “lIGll,rs ; (L= —

1
—MIIGIlly r.s-
o

A

A
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Theresult follows. 1

Lemma 10. Supposethat for some v > w),

_ S
0 I N Pl =< M < =
A

Then

1
NG o @|llyr—ps2 < m”@”b,r,s

forO<po<p<r<po—Sand 0 < s < /2, where ¢ denotesthe time-1-map
of the hamiltonian vectorfield Xg .

The hypotheses of the lemmaimply that
X}: Dr_p’s/z —> ‘Dr,s, O S t S 1.

This fact, however, is not used explicitly in the proof.

Proof. Consider the Lie series expansion

1
God =) —adiG,
= h!

where
alG=G, allG={al'G F}, h>o

For arbitrary p, o and positive integers h with 0 < hp <r, 0 < ho < s we have

|lad Gl = [[[{adz"G. FH[],

1 1 ro h-1

(5 + o) ekl
AT

(5 + 2 )l ol

by the preceding lemma and the assumption 55 > 2s. The notation ||| - ||, IS short
for [ - [l —np.s—ho - It€rating this estimate,

1 h
ISl e = (5 + 22 ) MPUGIHL o
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Replacing p, o by p/h, s/2h respectively and using the assumption pg < p < r
thisyields

8Mh\"
MaﬂGmquyzf(as> G, s

hh
By Stirling’s formula, h < " for h > 1. Hence,

1
G o @52 < Y MGl o2

h>0
8M\"
< Z <S> |||G|||u,r,s
h>0
S TTeY
i~ avijsIGlrs

provided that 8M < s. |

D An Inver se Function Theorem

The following lemma describes the inverse function theorem that is applied
during the KAM-step. Recall that W}, is an open complex neighbourhood of radius
h of some subset O of R" with respect to the sup-norm.

Lemmall. Suppose f isreal analytic from Wy, into C4. If
|f —id|,, <6 <h/4

on Wh, then f hasareal analyticinverse ¢ on Wh,4. Moreover,

% 00 A % oo =
on this domain.

Proof. Let k =h/4. Let u, v betwo pointsin Wy, suchthat f(u) = f(v).
Then

u—v=u-fW) —@w-"fw),

hence |u — v|,, < 2§ < 2k. It followsthat thesegment (1 —s)u+sv,0<s<1,
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Is strictly contained in Ws, . Along this segment,
0 =max|of — 1|, <d/k<1
by Cauchy’sinequality and so
U—v| < [0f — ] JU—v]| <0 |U—1]|y

by the mean value theorem. It followsthat u = v. Thus, f isone-to-oneon Wy.

By elementary argumentsfrom degreetheory theimage of Wy under f covers
Wy since | f —id|, <. So f hasarea analytic inverse ¢ on Wy, which clearly
satisfies |¢ — id|,, < §. Findly,

199 — Ty, = [@F) T op = 1],
<|@H =11y,
< (1—10f =y, ) " —1

=

by applying Cauchy to the domain Wy. 1

E More M easure Estimates

Thisappendix providesthe measure estimatesfor the example concerning finite
chains of oscillators. Let

N
& 2,22 L
du(w) = | | 2= e ¥ /2dw;, a =logi, i>2

Theweights are chosen so that for infinite N we have agaussian probability measure
@ on RY with support at the origin. Conversely, u isthe“projection” of i onto RN
obtained by “integrating out” the extra dimensions.

Proceeding as in the proof of Lemma 1 we obtain

logN . 1
Ikl AKD AKD

a Ry <



Appendix E: More Measure Estimates 55

for the k-th resonance zone Ry, and consequently

o @Y RN <Y Y @R

AcJ k0
suppkc A
N
1 1
< NlogN S
n; A([nD) O;Zn IKIA(IK])
where [n] stands for the weight of any interval of length n.
Now choose
D(t
At) = % DO = L 4t/r)y. >N

and recall that the function D is monotonically increasing in = for al t > 0. By

Lemma 3,
Z 1 <o /00 <n+t>dlog D(t)
A+ [khA(KD — 0 n D()

kezn
_on /OO n+t dt
~ ) Un Ja+yomt

The binomial equals (1 + t/1)(1 +t/2)--- (1 + t/n), while the denominator is
bounded from below by

A+t/t+D > @A +t/n+0)"

for2<n<N witho =min(2,1+ 17— N) > 1. Moreover,

t \ "o t " n+o €n"
1 1 = < < <en+0
(+n—|—a> H( +k>_n k — n —

by Stirling’'sformula. Thus,

1 o0 t -
3 <2 [7 (14 ) dt
£ (L+ [KDA(KI) o n+o

Together with ||k|| > |k| /+/]suppkK] for k £ O we obtain
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N 2
2"e'n
-1 N N
o lu@®N—RY) < B
a N L A ()

< " 2
< NZ(1+[n]/ ) n“(1+[nD

with By = CNlog N/ min(1, 7 — N). Choosing [A] = f |A|— f with f > 2e—1
we obtain a uniform bound of the last sum for all N and so

o tu (RN —RI) = O(NlogN)

uniformly in N.
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