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On invariant manifolds
of complex analytic mappings
near fixed points

JÜRGEN PÖSCHEL

1 Statement of the Result

We consider a complex analytic diffeomorphism g in Cn in the neighbourhood
of a fixed point p , which we may place at the origin. We assume that the linearization
of g at p is diagonizable. Then, possibly after a linear change of coordinates, we
can write

g : z �→ �z + ĝ(z),

where

� = diag(λ1, . . . , λn),

and ĝ vanishes up to first order at 0 ∈ Cn .
The linear mapping z �→ �z has a very simple structure. For instance, for

any subset λ1, . . . , λs of eigenvalues with 1 ≤ s ≤ n , the corresponding eigenspace
obviously is an invariant manifold M , on which the mapping is linear with these
eigenvalues.

We consider the following question. Under which conditions does such an in-
variant manifold persist after restoring the nonlinearity ĝ? More precisely, under
which conditions does there exist locally a complex analytic, invariant manifold M

of g , which is tangent to M , and on which the restricted map is analytically equiva-
lent to its linear part?
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This generalizes the question, under which conditions the map g can be lin-
earized at the fixed point.

A unique formal power series representation of M is easily found by compar-
ison of coefficients, provided we have

λ
k1
1 · · · · · λks

s − λi �= 0, k1 + · · · + ks ≥ 2, 1 ≤ i ≤ n,

with nonnegative integers k1, . . . , ks . In usual multiindex notation this reads

λk − λi �= 0, |k| ≥ 2, 1 ≤ i ≤ n, (1)

where

λ = (λ1, . . . , λs),

and k = (k1, . . . , ks), |k| = k1 + · · · + ks . See section 5 for the details.
The question of convergence is far more subtle. The differences (1) enter into

the denominators of the coefficients of the formal solution. Unless they are uniformly
bounded away from zero, they give rise to small divisors. It is well known [8, 22]
that they may cause the divergence of the formal solution, if they approach zero too
rapidly. To obtain convergence, we therefore have to put suitable bounds on them.

Define the function ω by

ω(m) = min
2≤|k|≤m

min
1≤i≤n

∣∣λk − λi
∣∣, m ≥ 2. (2)

We call the divisors λk − λi admissible, if∑
ν≥0

q−1
ν log ω−1(qν+1) <∞ (3)

for some sequence of integers 1 = q0 < q1 < . . . . This in fact holds if and only if∑
ν≥0

2−ν log ω−1(2ν+1) <∞.

For the simple proof see Brjuno [6]. For instance, divisors are admissible which
satisfy ∣∣λk − λi

∣∣ ≥ c |k|−N , |k| ≥ 2, 1 ≤ i ≤ n,

for some c > 0 and some large N . But much worse bounds are also admissible –
see for example Rüssmann [17].
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Our result can now be stated as follows.

Theorem If the divisors (1) are admissible, then there exists locally a com-
plex analytic invariant manifold M of g, which is tangent to the eigenspace M of
λ1, . . . , λs , and on which the mapping is analytically equivalent to its linear part.

We will prove the theorem by the traditional majorant method following Siegel
[20, 21] and Brjuno [6]. In the case of full linearization (s = n) the crucial observa-
tion is that only one of two divisors∣∣λk − λi

∣∣, ∣∣λl − λ j
∣∣

can really be small if |k − l| is small. This, however, is not necessarily true in the
case of partial linearization (s < n) if i �= j . But we observe that actually we only
need to compare divisors for which i = j . Then the same arguments apply.

Nowadays small divisor problems are usually approached by the more versatile
iteration method of Newton type introduced by Kolmogorov, Arnold and Moser [1,
13, 14]. As we will indicate, however, the result in the above form does not seem to
be within reach of this method. Stronger assumptions seem to be necessary.

2 Historical Notes

In the case n = 1, hence s = n , we are confronted with the problem of
linearizing an analytic map in the complex plane in the neighbourhood of a fixed
point. This leads to the functional equation of Schröder [19]

g � ψ = ψ � λ,

where λ denotes multiplication with the single eigenvalue λ of �. It has a unique
formal solution ψ = z + . . . , the “Schröder series”, if λ is not a root of unity.

The convergence of this formal solution was already known to Poincaré [16]
and proven by Koenigs [12] for 0 < |λ| �= 1. In this case, the fixed point is unstable,
and no small divisors occur. On the other hand, Cremer [8] showed that on the unit
circle |λ| = 1, there exists a dense set of λ, for which the Schröder series diverges
for suitable choices of g . These λ are not roots of unity, but some

∣∣λk − 1
∣∣ get small

very fast as k tends to infinity. See [22] for a simple example of that kind.
In 1942, Siegel [20] was the first to overcome the difficulty of the small divi-

sors using the majorant method in an ingenious way. He proved convergence of the
Schröder series provided λ satisfies∣∣λk − 1

∣∣ ≥ ck−N , k ≥ 1,
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for some c > 0 and some large N . This condition is satisfied on a set of full mea-
sure on the unit circle. Later on, he proved an analogous linearization result for
complex analytic vector fields of arbitrary dimensions [21]. This result was gener-
alized to mappings of arbitrary dimensions by Sternberg [23]. Finally, Brjuno [5, 6]
slightly varied the majorant method to allow for a wider class of small divisor esti-
mates. He introduced the condition (3), which seems to be the weakest small divisor
condition necessary to prove convergence. Incidentally, already in 1964, Cherry [7]
constructed a one dimensional example indicating the necessity of condition (3). Un-
fortunately, his argument seems to be incorrect.

The majorant method is confined to complex analytic problems, and does not
apply to real analytic problems in general, not to mention the just differentiable ones.
These became tractable only with the introduction of a rapidly converging iteration
method of Newton type by Kolmogorov, Arnold and Moser [1, 13, 14]. Of course,
this technique also applies to complex analytic problems. Rüssmann [17] treated the
Schröder equation this way, incorporating the more general small divisor estimates
of Brjuno. Arnold [2] indicated how to deal with higher dimensional mappings along
the same lines. A detailed exposition can be found in [3].

Soon after, the new approach was cast into the form of various generalized
implicit function theorems on function spaces. See Zehnder [25] and Hamilton [10]
for recent examples. In this manner, Sternberg [24] again considered the problem of
linearizing a mapping, but he had to assume

|λi | ≤ 1, 1 ≤ i ≤ n,

for some purely technical reason. He himself expressed doubt that this condition was
necessary. Gray [9] then removed it, following essentially Sternberg’s exposition.
Finally, Zehnder [26] gave a concise proof in terms of an implicit function theorem.

As to full linearization the result can actually be sharpened. Condition (1) is
necessary to ensure that every map g can be linearized formally. However, it may
happen that condition (1) is violated by some choices of k and i (possibly infinitely
often), and still there exists a formal transformation which linearizes g . Rüssmann
[18] showed that in this case there also exists a convergent transformation, provided
all the nonvanishing divisors (1) are admissible. See also Rüssmann [18] for an
important application of that fact.

The problem of partial linearization (s < n) seems to have attained only lit-
tle attention. Brjuno [6] studies rather extensively the existence of invariant mani-
folds at equilibria of analytic vector fields in the presence of small divisors. See also
Bibikov [4]. The case of a mapping was considered in the Diplomarbeit of Klingen-
berg [11]. They all use the iteration method.
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This note was actually prompted by the paper of Klingenberg. It turned out,
that in the case of partial linearization, the majorant method does give a stronger
result, as we will indicate now.

3 Comparison with the KAM method

The KAM method applies a succession of coordinate changes, which in the
limit is supposed to transform the given map into a “normal form”

h : z �→ �z + ĥ(z),

such that, for z = (u, v) ∈ Cs × Cn−s ,

ĥ
∣∣∣
v=0
= 0.

In these coordinates, M = {v = 0 }.
To assure convergence of this scheme, however, it is not enough to ask that

ĥ|v=0 = 0. In addition, the derivatives of ĥ in the normal direction of M have to
be considered leading to a more specific “normal form”. Accordingly, the transfor-
mations employed have to contain a term, which is linear in the normal coordinate v

and allows to keep control over these normal directions.
This phenomenon is rather well known for the problem of constructing invari-

ant manifolds at stationary points of vector fields corresponding to purely imaginary
eigenvalues. See for instance Brjuno [6], who introduces the notion of a “complete
normal form of an invariant surface”, or Bibikov [4], who refers to “quasi-normal
forms”. See also Moser [15] for the closely related problem of perturbing a not nor-
mally hyperbolic invariant torus carrying quasi-periodic motions. Klingenberg [11]
approaches the problem for mappings in the same manner.

The upshot is that normal derivatives introduce the additional divisors

λkλi − λ j , |k| ≥ 1, s + 1 ≤ i, j ≤ n. (4)

Of these, only finitely many can vanish because of (1). The others have to be admis-
sible to render a convergent iteration scheme.

We now give an example, where the divisors (1) are very well admissible,
while the divisors (4) are not. In other words, the admissibility of only the divisors
(1) is not sufficient to apply the KAM method.

The following example is taken from Klingenberg [11].
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Take s = 1, n = 3, and write

λ j = e2π iθ j , 1 ≤ j ≤ 3,

with 0 ≤ θ j ≤ 1. We also drop the index 1 to simplify the notation. We have, for
integer k and j = 1, 2, 3,

∣∣λk − λ j
∣∣ ∼ ∥∥kθ − θ j

∥∥,∣∣λkλi − λ j
∣∣ ∼ ∥∥kθ − (θi − θ j )

∥∥,

where ‖ξ‖ = mink∈Z |ξ − k|, and the tilde indicates that either side is bounded from
above and below by a constant multiple of the other side.

We choose θ so that

ω(m) = min
1≤k≤m

‖kθ‖

defines an admissible function ω. That is, ω satisfies (3). Then we pick µ in [0, 1]
such that

∣∣[kθ ] − µ
∣∣ ≤ 1

k!
for infinitely many k , where [ξ ] denotes the fractional part of a real number ξ . For
instance, we can take

µ ∈
⋂
ν≥0

Iν,

where the intervals Iν are constructed inductively as follows. Set I0 = [0, 1]. If
closed intervals I0 ⊃ I1 ⊃ · · · ⊃ Iν of positive length have already been constructed,
choose k so that [kθ ] ∈ Iν , and set

Iν+1 =
{
ξ : ∣∣ξ − [kθ ]∣∣ ≤ 1/k!} ∩ Iν .

This interval has positive length. The intersection of this nested sequence of closed
intervals is not empty.

Now the measure of the two sets of ξ in [0, 1] which satisfy

min
1≤k≤m

‖kθ − ξ‖ ≥ ω(m), m ≥ 2,
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and

min
1≤k≤m

‖kθ − (ξ − µ)‖ ≥ ω(m), m ≥ 2,

respectively, is greater than 1/2, if, say, ω(m) ≤ 10−1m−2 . We can therefore pick ξ

in the intersection of these two sets and set

θ2 = ξ, θ3 = ξ − µ.

With this choice of θ, θ2, θ3 , we have

min
1≤k≤m

∥∥kθ − θ j
∥∥ ≥ ω(m), m ≥ 2, 1 ≤ j ≤ 3.

But the differences

‖kθ − (θ2 − θ3)‖ = ‖kθ − µ‖ ≤ ∣∣[kθ ] − µ
∣∣

are certainly not admissible, because they roughly decay like 1/k! .

4 An example

We give a simple example of a map which can be linearized on some invariant
manifold, but not in a full neighbourhood of a fixed point.

Consider the case where all eigenvalues of � are powers of a fixed complex
number:

λi = µqi , 1 ≤ i ≤ n,

where

q1 = · · · = qs = q > qs+1 ≥ · · · ≥ qn

are integers with q ≥ 1 and 1 ≤ s < n , and µ is a complex number on the unit
circle such that

ω(m) = min
1≤l≤m

∣∣µl − 1
∣∣ (5)

is admissible.
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Then

∣∣λk − λi
∣∣ = ∣∣µ|k|q − µqi

∣∣ = ∣∣µ|k|q−qi − 1
∣∣.

For |k| ≥ 2 we have |k|q − qi ≥ |k|q − q ≥ 1, so we can apply (5) to obtain

∣∣λk − λi
∣∣ ≥ ω(|k|q − qi ) ≥ ω(|k|Q), |k| ≥ 2,

for some constant Q . It follows that the small divisors are admissible, and the Theo-
rem applies. On the other hand, a full linearization is in general not possible, because
(1) is violated in that case.

5 Proof of the Theorem

We propose to obtain the manifold M by an analytic embedding

ψ : w �→ z = Jw + ψ̂(w) (6)

of a ball at the origin in Cs into Cn . The s×n-matrix J maps Cs into the eigenspace
M of λ1, . . . , λs , and ψ̂ vanishes up to first order at the origin.

The embedding ψ has to satisfy the equation

g � ψ = ψ ��s,

where �s = diag(λ1, . . . , λs). The linear terms already agree, so we have to find a
solution ψ̂ of the nonlinear equation

ψ̂ ��s −�ψ̂ = ĝ � ψ, (7)

which is complex analytic in a neighbourhood of the origin in Cs .
The formal solution is straightforward. Write

ψ̂ =
∑
|k|≥2

ψkw
k, ψk ∈ Cn,

where k = (k1, . . . , ks), and

ĝ =
∑
|l|≥2

gl zl , gl ∈ Cn,
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where l = (l1, . . . , ln). Then (7) becomes

∑
|k|≥2

Ekψkw
k =

∑
|l|≥2

gl

( ∑
|m|≥1

ψmwm
)l

, (8)

where

Ek = λk I −�,

and the first order coefficients ψk , |k| = 1, are determined by (6). This equation
allows us to determine the coefficients ψk for |k| ≥ 2 uniquely by recursion, since
by assumption,

det Ek =
n∏

i=1

(
λk − λi

) �= 0.

To prove convergence of this formal solution in a neighbourhood of the origin,
we have to show that

sup
k

1

|k| log |ψk | <∞. (9)

We can assume, possibly after stretching the z-variables, that g is analytic and
bounded on |z| = maxi |zi | < 1. Then

|gl | ≤ M, |l| ≥ 2.

It follows from (8) that then

|ψk | ≤ ε−1
k M

∑
k1+···+kν=k

ν≥2

∣∣ψk1

∣∣ · . . . · ∣∣ψkν

∣∣, |k| ≥ 2,

where

εk = min
1≤i≤n

∣∣λk − λi
∣∣ = ∥∥E−1

k

∥∥−1
,

and the sum is taken over all possible decompositions of k into at least two nontrivial
summands with nonnegative integral components. Note that

|ψk | = 1, |k| = 1.
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Following Siegel [20] we decompose the problem of bounding (9) into two,
a simple one involving no divisors, and a not so simple one, involving the small
divisors. We define inductively

σr =
∑

r1+···+rν=r
ν≥2

σr1 · . . . · σrν , r ≥ 2,

and

δk = ε−1
k max

k1+···+kν=k
ν≥2

δk1 · . . . · δkν , |k| ≥ 2, (10)

with σ1 = 1 and δe = 1, where e stands for any integer vector k with |k| = 1. Then
we have

|ψk | ≤ σ|k|δk M |k|−1, |k| ≥ 1,

as one easily shows by induction. To establish (9) it therefore suffices to prove anal-
ogous estimates for the σr and δk .

Consider first the σr . For σ(t) =∑
r≥1 σr tr we have

σ − t =
∑
r≥2

σr tr =
∑
r≥2

(∑
s≥1

σs t s
)r

= σ 2

1− σ
,

hence

(σ − t)(1− σ) = σ 2.

This equation has a unique analytic solution σ = t + . . . , namely

σ(t) = t + 1

4

(
1−

√
1− 8t

(1+ t)2

)
, |t | < 1.

Hence,

sup
r≥2

1

r
log σr <∞.

We now consider the δk . Here we essentially repeat Brjuno’s argument [6]. In
(10) the maximum is attained for some decomposition k = k1 + . . .+ kν , which we
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may choose in some definite way. Decomposing the δk1 , . . . , δkν in the same manner
and proceeding like this, we obtain some well defined decomposition

δk = ε−1
k ε−1

l1
· . . . · ε−1

ls
, |k| ≥ 2,

where 2 ≤ |l1|, . . . , |ls | < |k|. Moreover,

εk =
∣∣λk − λik

∣∣, |k| ≥ 2,

the index ik also being chosen in some definite way.
We can then define

N j
m(k), m ≥ 2, 1 ≤ j ≤ n,

to be the number of factors ε−1
l in δk , with l = k, l1, . . . , ls , which satisfy

il = j and εl < θω(m),

where

4θ = min
1≤i≤n

|λi | ≤ 1. (11)

The last inequality can always be satisfied by replacing g by g−1 if necessary. Then
also ω ≤ 2.

The following is the key estimate.

Lemma (Brjuno) For m ≥ 2 and 1 ≤ j ≤ n,

N j
m(k) ≤




0, |k| ≤ m,

2
|k|
m
− 1, |k| > m.

For the proof of the Lemma, we fix m and j , and write N for N j
m . We then

proceed by induction on |k|.
For |k| ≤ m ,

εk ≥ ω(|k|) ≥ ω(m) ≥ θω(m)

by the definition of ω, hence N (k) = 0.
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So assume that |k| > m . Write

δk = ε−1
k δk1 · . . . · δkν , k = k1 + · · · + kν, ν ≥ 2,

using (10). We distinguish two cases.

Case 1: εk ≥ θω(m) and ik arbitrary, or εk < θω(m) and ik �= j . Then

N (k) = N (k1)+ · · · + N (kν).

To each term the induction hypotheses applies, since |k1|, . . . , |kν | < |k|, from
which N (k) ≤ 2 |k|/m − 1 follows immediately.

Case 2: εk < θω(m) and ik = j . Then

N (k) = 1+ N (k1)++ · · · + N (kν).

We can assume that |k| > |k1| ≥ · · · ≥ |kν |. Again, there are two cases.

Case 2.1: |k1| ≤ m or |k1| ≥ |k2| > m . With the first alternative,

N (k) = 1 ≤ 2
|k|
m
− 1.

With the other alternative, there is 2 ≤ µ ≤ ν , such that
∣∣kµ

∣∣ > m ≥ ∣∣kµ+1
∣∣. Then

also

N (k) = 1+ N (k1)+ · · · + N (kµ) ≤ 1+ 2
|k|
m
− µ ≤ 2

|k|
m
− 1,

and we are done.

Case 2.2: |k1| > m ≥ |k2|. Then

N (k) = 1+ N (k1).

Again, we have to distinguish two cases, according to the size of k1 .

Case 2.2.1: |k1| ≤ |k| − m . Then

N (k) ≤ 1+ 2
|k| − m

m
− 1 ≤ 2

|k|
m
− 1.
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Case 2.2.2: |k1| > |k| − m . This is the only interesting case. Let k∗ = k1 .
The crucial observation is that ε−1

k∗ does not contribute to N (k∗), for if ik∗ = j , then
εk∗ can not be small.

Indeed, suppose ik∗ = j and εk∗ =
∣∣λk∗ − λ j

∣∣ < θω(m). With (11) we have

∣∣λk∗
∣∣ >

∣∣λ j
∣∣− θω(m) ≥ 4θ − 2θ ≥ 2θ.

It follows that

2θω(m) > εk + εk∗

= ∣∣λk − λ j
∣∣+ ∣∣λk∗ − λ j

∣∣
≥ ∣∣λk − λk∗

∣∣
≥ ∣∣λk∗

∣∣ ∣∣λk−k∗ − 1
∣∣

≥ 2θω(|k − k∗| + 1)

≥ 2θω(m),

which is a contradiction. We applied (2) in the fourth line, because k − k∗ has
nonnegative integral components, and 1 ≤ |k − k∗| = |k| − |k∗| < m .

Therefore, case 1 applies to δk∗ , and we obtain

N (k) = 1+ N (k∗1)+ · · · + N (k∗ν),

where |k| > |k∗| > |k∗1| ≥ · · · ≥ |k∗ν |, and k∗ = k∗1 + . . . k∗ν with a different ν .
We can now repeat the analysis of case 2 for this decomposition, and we are finished,
unless we run again into case 2.2.2. In the latter case,

N (k) = 1+ N (k∗∗)

with |k∗∗| < |k∗| < |k|, and we can repeat the above argument. This loop, however,
can happen at most m times. Finally, we have to run into a different case. This
completes the induction, and the proof of the Lemma.

We can now estimate

1

|k| log δk =
s∑

µ=0

1

|k| log ε−1
kµ

.

Let 1 = q0 < q1 < . . . be a sequence of integers for which (3) holds. We can
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assume that
∑

q−1
ν converges. By the Lemma,

card
{

0 ≤ µ ≤ s : θω(qν+1) ≤ εkµ < θω(qν)
}

≤ N 1
qν

(k)+ · · · + N n
qν

(k) ≤ 2n
|k|
qν

for ν ≥ 1. This holds also for ν = 0 when the upper bound is dropped, since the
number of all factors δk is bounded by 2 |k| − 1. This follows directly from (10) by
induction. Consequently,

1

|k| log δk ≤ 2n
∑
ν≥0

1

qν

log
1

θω(qν+1)
<∞,

for (3) clearly remains valid if ω is multiplied by a constant factor. The right hand
side is independent of k , so

sup
k

1

|k| log δk <∞.

The Theorem is proven.

6 Addendum

Here is another proof of Brjuno’s Lemma which avoids the study of many
different cases. We again fix m and j , and write N for N j

m . Then we proceed by
induction on |k|.

For |k| ≤ m ,

εk ≥ ω(|k|) ≥ ω(m) ≥ θω(m),

hence N (k) = 0.
So assume that |k| > m . Write

δk = ε−1
k δk1 · . . . · δkν

with

k1 + . . .+ kν = k,

|k| > |k1| ≥ · · · ≥ |kν | ≥ 1.
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In this decomposition, only |k1| may be greater than K = max(|k| − m, m). If this
is the case, δk1 is decomposed in the same way. Repeating this step at most m − 1
times, we finally obtain the decomposition

δk = ε−1
k ε−1

k1
· . . . · ε−1

kµ
· δl1 · . . . · δlν ,

where µ ≥ 0, ν ≥ 2 and

k > k1 > · · · > kµ,

l1 + · · · + lν = k,∣∣kµ

∣∣ > K ≥ |l1| ≥ · · · ≥ |lν |.

Here, k > l means that k−l has nonnegative components and is not identically zero.
The point is that at most one of the ε’s can contribute to N (k). This is the

content of Siegel’s lemma.

Lemma (Siegel) If k > l and

εk < θω(m), εl < θω(m), ik = il ,

then |k − l| ≥ m.

The proof of this lemma is simple. The assumption εl < θω(m) implies

∣∣λl
∣∣ >

∣∣λil

∣∣− θω(m) ≥ 4θ − 2θ = 2θ.

It follows that

2θω(m) > εk + εl

= ∣∣λk − λik

∣∣+ ∣∣λl − λil

∣∣
≥ ∣∣λk − λl

∣∣
≥ ∣∣λl

∣∣ ∣∣λk−l − 1
∣∣

≥ 2θω(|k − l| + 1),

or ω(|k − l| + 1) < ω(m), which implies |k − l| ≥ m by the monotonicity of ω.
This proves Siegel’s lemma.
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It now follows from Siegel’s lemma and the decomposition of δk that

N (k) ≤ 1+ N (l1)+ · · · + N (lν).

Choose 0 ≤ ρ ≤ ν such that |lρ | > m ≥ |lρ+1|. By the induction hypotheses, all
terms with |l| ≤ m vanish, and we get

N (k) ≤ 1+ N (l1)+ · · · + N (lρ)

≤ 1+ 2

∣∣l1 + · · · + lρ
∣∣

m
− ρ

≤




1, ρ = 0,

2
|k| − m

m
, ρ = 1,

2

∣∣l1 + · · · + lρ
∣∣

m
− 1, ρ ≥ 2

≤ 2
|k|
m
− 1.

Brjuno’s lemma is proven.
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