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A KAM-Theorem
for some
Nonlinear Partial Differential Equations

Jürgen Pöschel

Introduction

In this paper a KAM-theorem about the existence of quasi-periodic motions in
some infinite dimensional hamiltonian systems is proven. In [5] and [8] this theorem
is applied to some nonlinear Schrödinger and wave equation on the interval [0, π ] ,
respectively, and we refer to these sources for motivation and background. Here we
concern ourselves with the basic KAM-theorem, which is the very foundation of these
applications.

The first theorem of this kind is due to Eliasson [2], who proved the existence
of invariant tori of less than maximal dimension in nearly integrable hamiltonian
systems of finite degrees of freedom. Thereafter, the result was extended to infinite
degrees of freedom systems by Wayne [10], the author [7] and, independently of
Eliasson’s work, by Kuksin – see [4] and the references therein. We refer to [4,7]
for more historical remarks, and to [4] for further applications. The relations of the
present paper to [4] and [7] will be discussed in the last section.
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1 Statement of Results

We consider small perturbations of an infinite dimensional hamiltonian in the
parameter dependent normal form

N =
∑

1≤ j≤n

ωj (ξ)yj + 1
2

∑
j≥1

Ωj (ξ)(u2
j + v2

j )

on a phase space

Pa,p = T
n × Rn × 
a,p × 
a,p � (x, y, u, v),

where Tn is the usual n -torus with 1 ≤ n < ∞ , and 
a,p is the Hilbert space of all
real (later complex) sequences w = (w1, w2, . . . ) with

‖w‖2
a,p =

∑
j≥1

|wj |2 j2pe2aj < ∞,

where a ≥ 0 and p ≥ 0. The frequencies ω = (ω1, . . . , ωn) and Ω = (Ω1, Ω2, . . . )

depend on n parameters ξ ∈ � ⊂ Rn , � a closed bounded set of positive Lebesgue
measure, in a way described below.

The hamiltonian equations of motion of N are

ẋ = ω(ξ), ẏ = 0, u̇ = Ω(ξ)v, v̇ = −Ω(ξ)u,

where (Ωu)j = Ωj u j . Hence, for each ξ ∈ � , there is an invariant n -dimensional
torus Tn

0 = Tn ×{0, 0, 0} with frequencies ω(ξ) , which has an elliptic fixed point in
its attached uv -space with frequencies Ω(ξ) . Hence Tn

0 is linearly stable. The aim
is to prove the persistence of a large portion of this family of linearly stable rotational
tori under small perturbations H = N + P of the hamiltonian N . To this end the
following assumptions are made.

Assumption A: Nondegeneracy. The map ξ �→ ω(ξ) is a lipeomorphism
between � and its image, that is, a homeomorphism which is Lipschitz continuous in
both directions. Moreover, for all integer vectors (k, l) ∈ Zn ×Z∞ with 1 ≤ |l| ≤ 2,∣∣{ξ : 〈k, ω(ξ)〉 + 〈l, Ω(ξ)〉 = 0}∣∣ = 0

and

〈l, Ω(ξ)〉 �= 0 on �,

where | · | denotes Lebesgue measure for sets, |l| = ∑
j

∣∣lj

∣∣ for integer vectors, and
〈·, ·〉 is the usual scalar product.
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Assumption B: Spectral Asymptotics. There exists d ≥ 1 and δ < d −1 such
that

Ωj (ξ) = j d + · · · + O( j δ),

where the dots stand for fixed lower order terms in j , allowing also negative expo-
nents. More precisely, there exists a fixed, parameter-independent sequence Ω̄ with
Ω̄j = j d + · · · such that the tails Ω̃j = Ωj − Ω̄j give rise to a Lipschitz map

Ω̃: � → 
−δ
∞ ,

where 
p
∞ is the space of all real sequences with finite norm w p = supj

∣∣wj

∣∣ j p .
– Note that the coefficient of j d can always be normalized to one by rescaling the
time. So there is no loss of generality by this assumption.

Assumption C: Regularity. The perturbation P is real analytic in the space
coordinates and Lipschitz in the parameters, and for each ξ ∈ � its hamiltonian
vector field X P = (Py, −Px , Pv, −Pu)

T defines near Tn
0 a real analytic map

X P : Pa,p → Pa, p̄,

{
p̄ ≥ p for d > 1,

p̄ > p for d = 1.

We may also assume that p − p̄ ≤ δ < d − 1 by increasing δ , if necessary.
To make this quantitative we introduce complex Tn

0 -neighbourhoods

D(s, r): |Im x | < s, |y| < r2, ‖u‖a,p + ‖v‖a,p < r,

where | · | denotes the sup-norm for complex vectors, and weighted phase space norms

W r = W p̄,r = |X | + 1

r2
|Y | + 1

r
‖U‖a, p̄ + 1

r
‖V ‖a, p̄ (1)

for W = (X, Y, U, V ) . Then we assume that X P is real analytic in D(s, r) for some
positive s , r uniformly in ξ with finite norm X P r,D(s,r) = sup

D(s,r)

X P r , and that the
same holds for its Lipschitz semi-norm

X P
L
r = sup

ξ �=ζ

∆ξζ X P r

|ξ − ζ | ,

where ∆ξζ X P = X P( · , ξ) − X P( · , ζ ) , and where the supremum is taken over � .

The main result decomposes into two parts, an analytic and a geometric one,
formulated as Theorem A and B, respectively. In the former the existence of invariant
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tori is stated under the assumption that a certain set of diophantine frequencies is not
empty. The latter assures that this is indeed the case.

To state the main results we assume that

|ω|L� + Ω L
−δ,� ≤ M < ∞,

∣∣ω−1
∣∣L
ω(�)

≤ L < ∞,

where the Lipschitz semi-norms are defined analogously to X P
L
r . Moreover, we

introduce the notations

〈l〉d = max
(
1,

∣∣∑ j dlj

∣∣) , Ak = 1 + |k|τ ,

where τ ≥ n + 1 is fixed later. Finally, let Z = {(k, l) �= 0, |l| ≤ 2 } ⊂ Zn × Z∞ .

Theorem A. Suppose H = N + P satisfies assumptions A, B and C, and

ε = X P r,D(s,r) + α

M
X P

L
r,D(s,r) ≤ γα,

where 0 < α ≤ 1 is another parameter, and γ depends on n , τ and s . Then there
exists a Cantor set �α ⊂ � , a Lipschitz continuous family of torus embeddings
�: Tn × �α → Pa, p̄ , and a Lipschitz continuous map ω∗: �α → Rn , such that for
each ξ in �α the map � restricted to Tn × {ξ} is a real analytic embedding of a
rotational torus with frequencies ω∗(ξ) for the hamiltonian H at ξ .

Each embedding is real analytic on |Im x | < s
2 , and

� − �0 r + α

M
� − �0

L
r ≤ cε/α,

|ω∗ − ω| + α

M
|ω∗ − ω|L ≤ cε,

uniformly on that domain and �α , where �0 is the trivial embedding Tn ×� → Tn
0 ,

and c ≤ γ −1 depends on the same parameters as γ .
Moreover, there exist Lipschitz maps ων and Ων on � for ν ≥ 0 satisfying

ω0 = ω , Ω0 = Ω and

|ων − ω| + α

M
|ων − ω|L ≤ cε,

Ων − Ω −δ + α

M
Ων − Ω L

−δ ≤ cε,

such that �\�α ⊂ ⋃
Rν

kl(α) , where

Rν
kl(α) =

{
ξ ∈ � : |〈k, ων(ξ)〉 + 〈l, Ων(ξ)〉| < α

〈l〉d

Ak

}
,
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and the union is taken over all ν ≥ 0 and (k, l) ∈ Z such that |k| > K02ν−1 for
ν ≥ 1 with a constant K0 ≥ 1 depending only on n and τ .

Remark 1. We will see at the end of section 4 that around each torus there exists
another normal form of the hamiltonian having an elliptic fixed point in the uv -space.
Thus all the tori are linearly stable. Moreover, their frequencies are diophantine.

Remark 2. The rôle of the parameter α is the following. In applications the
size of the perturbation usually depends on a small parameter, for example the size
of the neighbourhood around an elliptic fixed point. One then wants to choose α as
another function of this parameter in order to obtain useful estimates for |�\�α| .
See [5,8] for examples.

Remark 3. Theorem A only requires the frequency map ξ �→ ω(ξ) to be
Lipschitz continuous, but not to be a homeomorphism or lipeomorphism. This only
matters for Theorem B.

We now verify that the Cantor set �α is not empty, and that indeed |�\�α| → 0
as α tends to zero. In the case d = 1, let κ be the largest positive number such that
the unperturbed frequencies satisfy

Ωi − Ωj

i − j
= 1 + O( j−κ), i > j,

uniformly on � . Without loss of generality, we can assume that −δ ≤ κ by increasing
δ , if necessary.

Theorem B. Let ων and Ων for ν ≥ 0 be Lipschitz maps on � satisfying

|ων − ω| , Ων − Ω −δ ≤ α, |ων − ω|L , Ων − Ω L
−δ ≤ 1

2L
,

and define the sets Rν
kl(α) as in Theorem A choosing τ as in (22). Then there exists

a finite subset X ⊂ Z and a constant c̃ such that

∣∣∣ ⋃
(k,l)/∈X

Rν
kl(α)

∣∣∣ ≤ c̃ρn−1αµ, µ =
{

1 for d > 1,
κ

κ + 1
for d = 1,

for all sufficiently small α , where ρ = diam � . The constant c̃ and the index set X

are monotone functions of the domain � : they do not increase for closed subsets of
� . In particular, if δ ≤ 0 , then X ⊂ {(k, l) : 0 < |k| ≤ 16L M } .
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By slightly sharpening the smallness condition the frequency maps of Theo-
rem A satisfy the assumptions of Theorem B, and we may conclude that the measure
of all sets Rν

kl(α) tends to zero.

Corollary C. If in Theorem A, the constant γ is replaced by a smaller con-
stant γ̃ ≤ γ /2L M depending on the set X , then

|�\�α| ≤
∣∣∣⋃ Rν

kl(α)

∣∣∣ → 0 as α → 0 . (2)

In particular, if δ ≤ 0 , then one may take γ̃ = γ

2(L M)τ+1
.

The point of choosing γ̃ is to make sure that max(k,l)∈X |k| ≤ K0 , so that for
(k, l) ∈ X we only need to consider the sets R0

kl(α) , which are defined in terms of
the unperturbed frequencies. Then

∣∣R0
kl(α)

∣∣ → 0 as α → 0 by Assumption A.
In the applications [5,8] the unperturbed frequencies are in fact affine functions

of the parameters. In the case d > 1, as it happens in the nonlinear Schrödinger
equation, we then immediately obtain |�\�α| ≤ c̃ρn−1α . In the case d = 1,
however, α appears with the exponent µ < 1, and it happens that for the nonlinear
wave equation the present estimate is not sufficient to conclude that the set of bad
frequencies is smaller than the set of all frequencies (which also depends on a small
parameter). The following better estimate is required, which we only formulate for
the case needed.

Theorem D. Suppose that in Theorem A the unperturbed frequencies are
affine functions of the parameters. Then

|�\�α| ≤ c̃ρn−1αµ̃, µ̃ =
{

1 for d > 1,
κ

κ + 1 − π/4
for d = 1,

for all sufficiently small α , where π is any number in 0 ≤ π < min( p̄ − p, 1) . In
this case the constant c̃ also depends on π and p̄ − p .

The rest of the paper consists almost entirely of the proofs of the preceding
results, which employs the usual Newton type iteration procedure to handle small
divisor problems. In section 2 the relevant linearized equation is considered, and in
section 3 one step of the iterative scheme is described. The iteration itself takes place
in section 4, and section 5 provides the estimates of the measure of the excluded set of
parameters. In section 6 some refinement of these measure estimates is undertaken,
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and in section 7 we finally observe that the results imply that a certain class of normal
forms is structurally stable. The paper concludes with a few remarks relating this
paper to previous work, in particular [4] and [7].

2 The linearized equation

The KAM-theorem is proven by the usual Newton-type iteration procedure,
which involves an infinite sequence of coordinate changes and is described in some
detail for example in [7]. Each coordinate change � is obtained as the time-1-map
Xt

F

∣∣
t=1 of a hamiltonian vector field X F . Its generating hamiltonian F as well

as some correction N̂ to the given normal form N are a solution of the linearized
equation

{F, N } + N̂ = R,

which is the subject of this section. One then finds that � takes the hamiltonian
H = N + R into H � � = N+ + R+ , where N+ = N + N̂ is the new normal form
and R+ = ∫ 1

0 {(1 − t)N̂ + t R, F} � Xt
F dt the new error term.

We suppose that in complex coordinates z = 1√
2
(u − iv) and z̄ = 1√

2
(u + iv)

we have N = 〈ω(ξ), y〉 + 〈Ω(ξ), zz̄〉 and

R =
∑

2|m|+|q+q̄|≤2

∑
k

Rkmqq̄ ei〈k,x〉ym zq z̄q̄ , (3)

with coefficients depending on ξ ∈ � , such that X R : Pa,p → Pa, p̄ is real analytic
and Lipschitz in ξ . The mean value of such a hamiltonian is defined as

[R] =
∑

|m|+|q|=1

Romqq ym zq z̄q

and is of the same form as N .

Lemma 1. Suppose that uniformly on � ,

|〈k, ω(ξ)〉 + 〈l, Ω(ξ)〉| ≥ α
〈l〉d

Ak
, (k, l) ∈ Z,

where α > 0 and Ak ≥ 1 . Then the linearized equation {F, N } + N̂ = R has a
solution F , N̂ that is normalized by [F] = 0 , [N̂ ] = N̂ , and satisfies
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X N̂ r ≤ X R r , X F r,−σ ≤ 26 Bσ

α
X R r ,

X N̂
L
r ≤ X R

L
r , X F

L
r,−σ ≤ 28 Bσ

α

(
X R

L
r + M

α
X R r

)
,

for 0 < σ ≤ s , where M = |ω|L + Ω L
−δ and B2

σ = 2n
∑

k(1 + |k|)2 A4
k e−2|k|σ ,

and the short hands · r = · r,D(s,r) and · r,−σ = · r,D(s−σ,r) are used.

The estimates hold in fact with Ω L
1−d in place of Ω L

−δ , but this slightly better
result is not needed later. Concerning the dependence on σ the above estimates are
very crude but sufficient for our purposes. Much better estimates have been obtained
by Rüssmann – see for example [9].

Proof. Writing expansions for F and N̂ analogous to that for R and using the
nonresonance assumptions one finds by comparison of coefficients that N̂ = [R] and

iFkmqq̄ =



Rkmqq̄

〈k, ω〉 + 〈q − q̄, Ω〉 for |k| + |q − q̄| �= 0,

0 otherwise,

for all ξ , which is not indicated. With the chosen normalization this solution is also
unique.

For the estimates we decompose R = R0 + R1 + R2 , where R j comprises all
terms with |q + q̄| = j , and furthermore

R0 = R00,

R1 = 〈
R10, z

〉 + 〈
R01, z̄

〉
,

R2 = 〈
R20z, z

〉 + 〈
R11z, z̄

〉 + 〈
R02 z̄, z̄

〉
,

where the Ri j depend on x, ξ , and R00 depends in addition on y . With a similar
decomposition of F and N̂ , the linearized equation decomposes into

{Fi j , N } = Ri j − [Ri j ], N̂ i j = [Ri j ],

and it suffices to discuss each term individually. In the following we do this for
Ṙ = R10 and R̈ = R11 . To shorten notation, let ‖ · ‖ = ‖ · ‖a, p̄ .

Consider the term Ḟ = F10 . We have Ṙ = Rz|z,z̄=0 and thus

∥∥Ṙ
∥∥

D(s) ≤ r X R r ,

where D(s) = {|Im x | < s} . This is an analytic map into 
a, p̄ with a Fourier series
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expansion whose coefficients Ṙk satisfy the usual L2 -bound

∑
k

∥∥Ṙk

∥∥2
e2|k|s ≤ 2n

∥∥Ṙ
∥∥2

D(s) .

Each coefficient is a Lipschitz map � → 
a, p̄ , and the corresponding coefficient of
Ḟ is given by

iḞk, j = Ṙk, j

〈k, ω〉 + Ωj
, j ≥ 1.

By the small divisor assumptions we have
∣∣〈k, ω〉 + Ωj

∣∣ ≥ α/Ak and thus
∥∥Ḟk

∥∥ ≤
(Ak/α)

∥∥Ṙk

∥∥ uniformly on � . It follows that

∥∥Ḟ
∥∥

D(s−σ)
≤

∑
k

∥∥Ḟk

∥∥ e|k|(s−σ)

≤ 1

α

√∑
k

A2
k e−2|k|σ

√∑
k

∥∥Ṙk

∥∥2
e2|k|s ≤ Bσ

α

∥∥Ṙ
∥∥

D(s)
,

or
1

r

∥∥Ḟ
∥∥

D(s−σ)
≤ Bσ

α
X R r .

To control the Lipschitz semi-norm of Ḟ , let δk, j = 〈k, ω〉+Ωj and ∆ = ∆ξζ

for ξ, ζ ∈ � . Then we have i∆Ḟk, j = ∆(δ−1
k, j Ṙk, j ) = δ−1

k, j (ξ)∆Ṙk, j + Ṙk, j (ζ )∆δ−1
k, j

and

−∆δ−1
k, j = ∆δk, j

δk, j (ξ)δk, j (ζ )
= 〈k, ∆ω〉 + ∆Ωj

δk, j (ξ)δk, j (ζ )
.

The small divisor assumptions give
∣∣δk, j

∣∣ ≥ α j d/Ak . Therefore,

∣∣∆δ−1
k, j

∣∣ ≤ A2
k

α2

(
|k| |∆ω| + ∆Ωj −δ

j−d
)

and hence

∥∥∆Ḟk

∥∥ ≤ Ak

α

∥∥∆Ṙk

∥∥ + A2
k

α2

(|k| |∆ω| + ∆Ω −δ

) ∥∥Ṙk

∥∥ .

Summing up the Fourier series as before we obtain

∥∥∆Ḟ
∥∥

D(s−σ)
≤ Bσ

α

∥∥∆Ṙ
∥∥

D(s) + Bσ

α2

(|∆ω| + ∆Ω −δ

) ∥∥Ṙ
∥∥

D(s) .
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Dividing by |ξ − ζ | and taking the supremum over ξ �= ζ in � we arrive at

1

r

∥∥Ḟ
∥∥L

D(s−σ)
≤ Bσ

α

(
X R

L
r + M

α
X R r

)
.

Consider now the term F̈ = F11 . We have R̈ = ∂z̄∂z R , hence by the general-
ized Cauchy inequality of Lemma A.3,

∥∥R̈
∥∥

D(s)
≤ 1

r
‖Rz‖D(s,r) ≤ X R r

in the operator norm for bounded linear operators 
a,p → 
a, p̄ . This is equivalent to
the statement that R̃ = (

vi R̈i jwj
)

is a bounded linear operator of 
2 into itself with
operator norm |||R̃|||D(s) = ∥∥R̈

∥∥
D(s) , where vi , wj are certain weights whose explicit

form does not matter here.
Expanding R̃ into its Fourier series with operator valued coefficient R̃k we

have, as before,
∑

k |||R̃k |||2 e2|k|s ≤ 2n |||R̃|||D(s) . The corresponding coefficient of
F̃k = (F̃k,i j ) is given by

iF̃k,i j = R̃k,i j

〈k, ω〉 + Ωi − Ωj
, |k| + |i − j | �= 0,

while F̃0, j j = 0, and the coefficients R̃0, j j are absorbed by N̂ . The small divisor
assumptions imply that

∣∣〈k, ω〉 + Ωi − Ωj

∣∣ ≥ α(1 + |i − j |)/Ak , since d ≥ 1.
Hence, by Lemma A.1 we obtain |||F̃k ||| ≤ 3(Ak/α) |||R̃k ||| uniformly in � , and
summing up as before, |||F̃ |||D(s−σ) ≤ 3(Bσ /α) |||R̃|||D(s) . Going back to the operator
norm ‖ · ‖ and multiplying by z we arrive at

1

r

∥∥F̈ z
∥∥

D(s−σ,r)
≤ 3Bσ

α
X R r .

The Lipschitz estimate follows the same lines as the one for Ḟ . So we con-
sider i∆F̃k,i j = δ−1

k,i j∆R̃k,i j + R̃k,i j∆δ−1
k,i j with δk,i j = 〈k, ω〉 + Ωi − Ωj . Since

2
∣∣i d − j d

∣∣ ≥ |i − j | (i d−1 + j d−1) , the small divisor assumptions imply

∣∣δk,i j

∣∣ ≥ α

2Ak
(i δ + j δ) |i − j | , i �= j.

We thus obtain

∣∣∆δ−1
k,i j

∣∣ ≤ 4A2
k

α2

(|k| |∆ω| + 2 ∆Ω −δ

) 1

|i − j |
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and

|||∆F̃k ||| ≤ Ak

α
|||∆R̃k ||| + 25 A2

k

α2

(|k| |∆ω| + ∆Ω −δ

) |||R̃k ||| .

This leads to ∥∥F̈
∥∥L

D(s−σ)
≤ Bσ

α

∥∥R̈
∥∥L

D(s)
+ 25 Bσ

α2
M

∥∥R̈
∥∥

D(s)

and
1

r

∥∥F̈ z
∥∥L

D(s−σ,r)
≤ 25 Bσ

α2

(
X R

L
r + M

α
X R r

)
.

The terms F10 and F11 exhibit all the difficulties involved with infinitely many
degrees of freedom. All the other components Fi j admit the same estimates, or even
better ones. To each component of the hamiltonian vector field X F , at most eight
such terms are contributing. The estimates of X F thus follow.

The estimates of X N̂ follow from the observation that N̂y is the Tn -mean value
of Ry , and N̂zz̄ is the diagonal of the Tn -mean value of Rzz̄ .

For our purposes the estimates of Lemma 1 may be condensed as follows. For
λ ≥ 0, define

X λ
r = X r + λ X L

r .

Since we will always use the symbol ‘λ ’ in this rôle, there should be no confusion
with exponentiation. Also, · ∗

r stands for either · r or · L
r .

Lemma 2. The estimates of Lemma 1 imply that

X N̂
∗
r,D(s,r)

≤ X R
∗
r,D(s,r) , X F

λ
r,D(s−σ,r) ≤ aBσ

α
X R

λ
r,D(s,r)

for 0 < σ ≤ s and 0 ≤ λ ≤ α/M with some absolute constant a . Moreover, if
Ak = 1 + |k|τ , then

Bσ ≤ b

σ 2τ+n+1
(4)

with some constant b ≥ 1 depending on n and τ .
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3 The KAM Step

At the general ν -th step of the iteration scheme we are given a hamiltonian
Hν = Nν + Pν , where Nν = 〈ων(ξ), y〉 + 〈Ων(ξ), zz̄〉 is a normal form and Pν is a
perturbation that is real analytic on D(sν, rν) . Both are Lipschitz in ξ , which varies
over a closed set �ν , on which |ων |L + Ων

L
−δ ≤ Mν and

|〈k, ων(ξ)〉 + 〈l, Ων(ξ)〉| ≥ αν

〈l〉d

Ak
, (k, l) ∈ Z. (5)

For the duration of this section we now drop the index ν and write ‘+ ’ for
‘ν + 1 ’ to simplify notation. Thus, P = Pν , P+ = Pν+1 , and so on. Also, we write
� in estimates in order to suppress various multiplicative constants, which depend
only on n and τ and could be made explicit, but need not be. Indeed, the only
dependence on τ enters through the constant b in (4).

To perform the next step of the iteration we assume that the perturbation is so
small that we can choose 0 < η < 1

8 and 0 < σ < s , σ ≤ 1, such that

X P r,D(s,r) + α

M
X P

L
r,D(s,r) ≤ ασ tη2

c0
, (6)

where t = 2τ + n + 2 and c0 is some sufficiently large constant depending only on
n and τ . On the other hand, for the KAM step we need not assume that the frequency
map ω is a homeomorphism or lipeomorphism.

Approximating P . We approximate P by its Taylor polynomial R in y, z, z̄
of the form (3). This amounts to corresponding approximations of the partials
Px , Py, Pz, Pz̄ which constitute the vector field X P . Since P is analytic, all these
approximations are given by certain Cauchy integrals, and the estimates are the same
as in a finite dimensional setting. We obtain

X R
∗
r,D(s,r) � X P

∗
r , X R − X P

∗
ηr,D(s,4ηr) � η X P

∗
r . (7)

Solution of the linearized equation. Since the small divisor estimates (5) are
supposed to hold, we can solve the linearized equation {F, N } + N̂ = R with the
help of Lemmata 1 and 2. Together with the preceding estimate of X R we obtain

X N̂
∗
r,D(s,r)

� X P
∗
r , X F

λ
r,D(s−σ,r) �

1

ασ t−1
X P

λ
r , (8)

for 0 ≤ λ ≤ α/M . Furthermore we have the estimate DX F r,r,D(s−2σ,r/2) �



Section 3: The KAM Step 13

σ−1 X F r,D(s−σ,r) , where on the left we use the operator norm

L r,s = sup
W �=0

LW p̄,r

W p,s
,

with · p̄,r defined in (1), and · p,r defined analogously. This follows by the
generalized Cauchy estimate of Lemma A.3 and the observation that every point in
D(s − 2σ, r/2) has at least · p,r -distance σ/2 to the boundary of D(s − σ, r) .

Coordinate transformation. The preceding estimates and assumption (6)
imply that

1

σ
X F r,D(s−σ,r) , DX F r,r,D(s−2σ,r/2) �

η2

c0
(9)

is small. Hence the flow Xt
F exists on D(s − 3σ, r/4) for −1 ≤ t ≤ 1 and takes

this domain into D(s − 2σ, r/2) , and by Lemma A.4 we have

Xt
F − id

∗
r,D(s−3σ,r/4)

� X F
∗
r,D(s−σ,r) (10)

for −1 ≤ t ≤ 1. Furthermore, by the generalized Cauchy estimate,

DXt
F − I

∗
r,r,D(s−4σ,r/8)

�
1

σ
X F

∗
r,D(s−σ,r) , (11)

since any point in D(s−4σ, r/8) has · r -distance greater than σ/32 to the boundary
of D(s − 3σ, r/4) .

The new error term. Subjecting H = N+P to the symplectic transformation
� = Xt

F

∣∣
t=1 we obtain the new hamiltonian H � � = N+ + P+ on D(s − 5σ, ηr) ,

where N+ = N + N̂ and P+ = (P − R) � X1
F + ∫ 1

0 {R(t), F} � Xt
F dt with R(t) =

(1 − t)N̂ + t R . Hence, the new perturbing vector field is

X P+ = (X1
F )∗(X P − X R) +

∫ 1

0
(Xt

F )∗[X R(t), X F ] dt.

We will show at the end of this section that for 0 ≤ t ≤ 1,

(Xt
F )∗Y

λ

ηr,D(s−5σ,ηr)
� Y λ

ηr,D(s−2σ,4ηr) . (12)

We already estimated X P −X R , so it remains to consider the commutator [X R(t), X F ] .
To shorten notation we write R for R(t) .
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On the domain D(s − 2σ, r/2) we have, using p̄ ≥ p ,

[X R, X F ] r ≤ DX R ·X F r + DX F ·X R r

≤ DX R r,r X F r + DX F r,r X R r .

Using the generalized Cauchy estimate and (7) we get

[X R, X F ] r,D(s−2σ,r/2) � σ−1 X P r X F r,D(s−σ,r) .

Similarly, on the same domain,

[X R, X F ] L
r ≤ DX R

L
r,r X F r + DX R r,r X F

L
r

+ DX F
L
r,r X R r + DX F r,r X R

L
r

� σ−1 X P
L
r X F r,D(s−σ,r) + σ−1 X P r X F

L
r,D(s−σ,r) .

Finally, we have Y λ
ηr ≤ η−2 Y λ

r for any vector field Y . So altogether we obtain

[X R, X F ] λ
ηr,D(s−2σ,r/2) ≤ 1

η2
[X R, X F ] λ

r,D(s−2σ,r/2)

�
1

ση2
X P

λ
r X F

λ
r,D(s−σ,r) �

1

ασ tη2

(
X P

λ
r

)2

for 0 ≤ λ ≤ α/M . Collecting all terms we then arrive at the estimate

X P+
λ

ηr,D(s−5σ,ηr)
�

1

ασ tη2

(
X P

λ
r

)2 + η X P
λ
r , (13)

0 ≤ λ ≤ α/M , for the new error term.

The new normal form. This is N+ = N + N̂ with X N̂
∗
r � X P

∗
r . This

implies |ω̂| � X P r and ‖Ω̂z‖ p̄ � r X P r on D(s, r) , hence Ω̂ p̄−p � X P r

on � . The same holds for their Lipschitz semi-norms. With −δ ≤ p̄ − p we get

|ω̂| + Ω̂ −δ � X P r , |ω̂|L + Ω̂ L
−δ � X P

L
r . (14)

In order to bound the small divisors for the new frequencies ω+ = ω + ω̂ and Ω+ =
Ω + Ω̂ for |k| ≤ K , K to be chosen later, we observe that |l|δ ≤ |l|d−1 ≤ 2〈l〉d ,
hence

|〈k, ω̂〉 + 〈l, Ω̂〉| ≤ |k| |ω̂| + |l|δ Ω̂ −δ

� |k| X P r 〈l〉d ≤ α̂
〈l〉d

Ak
,
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with some α̂ >· A′
K X P r , where A′

K = K max|k|≤K Ak and the dot represents some
constant. Using the bound for the old divisors, the new ones then satisfy

|〈k, ω+(ξ)〉 + 〈l, Ω+(ξ)〉| ≥ α+
〈l〉d

Ak
, |k| ≤ K , (15)

on � with α+ = α − α̂ . In the next section we will make sure that α+ is positive.

Proof of estimate (12). Fix � = Xt
F and consider �∗Y = D�−1Y � � .

Then � maps U = D(s − 5σ, ηr) into V = D(s − 4σ, 2ηr) by the estimate (9).
Hence, �∗Y ηr,U ≤ D�−1

ηr,ηr,V
Y ηr,V , and

D�−1
ηr,ηr ≤ 1 + D�−1 − I

ηr,ηr ≤ 1 + η−2 D�−1 − I r,r � 1

by (11) and (9). So we have �∗Y ηr,U � Y ηr,V .
As to the Lipschitz semi-norm we observe that both � and Y depend on

parameters. Therefore,

∆�∗Y
ηr,U

≤ ∆D�−1
ηr,ηr,V

Y � � ηr,U + D�−1
ηr,ηr,V

∆(Y � �) ηr,U

� ∆D�−1
ηr,ηr,V Y ηr,V + ∆Y ηr,V + DY ηr,r,V ∆� r,U .

It follows that

�∗Y
L

ηr,U � D�−1 − I
L

ηr,ηr,V Y ηr,V + Y L
ηr,V + DY ηr,r,V � − id L

r,U

� Y L
ηr,V + 1

ση2
Y ηr,W X F

L
r,V

with W = D(s − 2σ, 4ηr) , using the generalized Cauchy estimate and (10), (11).
Since λ X F

L
r,V � ση2 by (8) and (9), we obtain

�∗Y
ηr,U

+ λ �∗Y
L

ηr,U
� Y ηr,W + λ Y L

ηr,W ,

as we wanted to show.

4 Iteration and Proof of Theorem A

To iterate the KAM step infinitely often we now choose sequences for the perti-
nent parameters. The guiding principle is to choose a geometric sequence for σ , to
minimize the error estimate by choice of η , and to keep α and M essentially constant.
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Let c1 be twice the maximum of all implicit constants obtained during the KAM

step and depending only on n and τ . For ν ≥ 0 set

αν = α0

2

(
1 + 2−ν

)
, Mν = M0

(
2 − 2−ν

)
, λν = αν

Mν

,

and

εν+1 = c1ε
!
ν

(ανσ t
ν )

!−1
, σν+1 = σν

2
, η3

ν = εν

ανσ t
ν

,

where ! = 4
3 . Furthermore, sν+1 = sν − 5σν , rν+1 = ηνrν , and Dν = D(sν, rν) .

As initial value fix σ0 = s0/40 ≤ 1/4 so that s0 > s1 > · · · ≥ s0/2, and assume

ε0 ≤ γ0α0σ
t
0, γ0 ≤ (c0 + 2t+3c1)

−3, (17)

where c0 appears in (6). Finally, let Kν = K02ν with K τ+1
0 = 1

c1γ0
.

Iterative Lemma. Suppose Hν = Nν + Pν is given on Dν × �ν , where
Nν = 〈ων(ξ), y〉 + 〈Ων(ξ), zz̄〉 is a normal form satisfying |ων |L + Ων

L
−δ ≤ Mν ,

|〈k, ων(ξ)〉 + 〈l, Ων(ξ)〉| ≥ αν

〈l〉d

Ak
, (k, l) ∈ Z,

on �ν , and

X Pν

λν

rν ,Dν
≤ εν.

Then there exists a Lipschitz family of real analytic symplectic coordinate transfor-
mations �ν+1: Dν+1 × �ν → Dν and a closed subset

�ν+1 = �ν\
⋃

|k|>Kν

Rν+1
kl (αν+1)

of �ν , where

Rν+1
kl (αν+1) =

{
ξ ∈ �ν : |〈k, ων+1〉 + 〈l, Ων+1〉| < αν+1

〈l〉d

Ak

}
,

such that for Hν+1 = Hν � �ν+1 = Nν+1 + Pν+1 the same assumptions are satisfied
with ν + 1 in place of ν .

Proof. By induction one verifies that εν ≤ γ0ανσ
t
ν/2ν for all ν ≥ 0. With

the definition of ην this implies εν ≤ ανσ
t
νη

2
ν/c0 . So the smallness condition (6) of
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the KAM step is satisfied, and there exists a transformation �ν+1: Dν+1 × �ν → Dν

taking Hν into Hν+1 = Nν+1 + Pν+1 . The new error satisfies the estimate

X Pν+1

λν+1

rν+1,Dν+1
≤ c1

2

(
ε2
ν

ανσ t
νη

2
ν

+ ηνεν

)

≤ c1

2

(
ε!
ν

(ανσ t
ν )

!−1
+ ε!

ν

(ανσ t
ν )

!−1

)
≤ εν+1.

In view of (14) the Lipschitz semi-norm of the new frequencies is bounded by

Mν + c1 X Pν

L
rν

≤ Mν + c1εν

αν

Mν ≤ Mν

(
1 + 2−ν−2

) ≤ Mν+1

as required. Finally, one verifies that c1εν ≤ c1γ0ανσ
t
ν ≤ (αν − αν+1)/A′

Kν
, hence

c1 A′
Kν

X Pν rν
≤ αν − αν+1.

So by (15) the small divisor estimates hold for the new frequencies with parame-
ter αν+1 up to |k| ≤ Kν . Removing from �ν the union of the resonance zones
Rν+1

kl (αν+1) for |k| > Kν we obtain the parameter domain �ν+1 ⊂ �ν with the
required properties.

With (10), (11) and (14) we also obtain the following estimates.

Estimates. For ν ≥ 0 ,

1

σν

�ν+1 − id λν

rν ,Dν+1
, D�ν+1 − I λν

rν ,rν ,Dν+1
≤ c1εν

ανσ t
ν

,

|ων+1 − ων |λν

�ν
, Ων+1 − Ων

λν−δ,�ν
≤ c1εν.

(18)

Proof of Theorem A. Suppose the assumptions of Theorem A are satisfied. To
apply the Iterative Lemma with ν = 0, set s0 = s , r0 = r , . . . , N0 = N , P0 = P
and γ = γ0σ

t
0 . The smallness condition is satisfied, because

X P0

λ0
r0,D0

= X P
λ
r,D(s,r) ≤ γα = γ0α0σ

t
0 = ε0.

The small divisor conditions are satisfied by setting �0 = �\ ⋃
k,l R0

kl(α0) . Then the
Iterative Lemma applies, and we obtain a decreasing sequence of domains Dν × �ν

and transformations �ν = �1 � . . . � �ν : Dν × �ν−1 → Dν−1 for ν ≥ 1, such that
H � �ν = Hν + Pν . Moreover, the estimates (18) hold.
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To prove convergence of the �ν we note that the operator norm · r,s satisfies
AB r,s ≤ A r,r B s,s for r ≥ s . We thus obtain

�ν+1 − �ν

r0,Dν+1
≤ D�ν

r0,rν ,Dν
�ν+1 − id rν ,Dν+1

,

and

D�ν
r0,rν ,Dν

≤
ν∏

µ=0

D�µ
rµ,rµ,Dµ

≤
∏
µ≥0

(
1 + 2−µ−2

) ≤ 2

for all ν ≥ 0. Also,

�ν+1 − �ν L

r0,Dν+1
≤ D�ν L

r0,rν ,Dν
�ν+1 − id rν ,Dν+1

+ D�ν
r0,rν ,Dν

�ν+1 − id L
rν ,Dν+1

,

where the first factor is uniformly bounded in a similar fashion. It follows that

�ν+1 − �ν λ0

r0,Dν+1
� �ν+1 − id λν

rν ,Dν+1
.

So the �ν converge uniformly on
⋂

Dν × �ν = D(s/2) × �α to a Lipschitz
continuous family of real analytic torus embeddings �:Tn × �α → Pa, p̄ , for which
the estimates of Theorem A hold. Similarly, the frequencies ων and Ων converge
uniformly on �α to Lipschitz continuous limits ω∗ and Ω∗ with estimates as in
Theorem A. The embedded tori are invariant rotational tori, because

X H � �ν − D�ν ·X Nν rν ,Dν
� (�ν)∗ X H − X Nν rν ,Dν

≤ X Pν rν ,Dν
,

whence in the limit, X H �� = D�·Xω∗ for each ξ ∈ �α , where Xω∗ is the constant
vector field ω∗ on Tn .

It remains to prove the characterization of the set �α . By construction, �\�α

is the union of the inductively defined resonance zones Rν
kl(αν) for ν ≥ 0 and

|k| > Kν−1 , where the involved frequencies ων , Ων are Lipschitz on �ν−1 , and
K−1 = 0, �−1 = � . By Lemma A.2, each coordinate function of ων −ω on �ν has
a Lipschitz continuous extension to � preserving minimum, maximum and Lipschitz
semi-norm. Since we are using the sup-norm for ω , doing this for each component
we obtain an extension ω̆ν : � → Rn of ων with |ω̆ν − ω|λ� = |ων − ω|λ�ν

. The
same applies to Ων . It follows that

Rν
kl(αν) ⊂

{
ξ ∈ � : |〈k, ω̆ν〉 + 〈l, Ω̆ν〉| < α0

〈l〉d

Ak

}
.



Section 5: Measure Estimates and Proof of Theorem B 19

The latter are the resonance zones described in Theorem A, if we drop the ˘ . This
completes the proof of Theorem A.

Actually, more information may be extracted from the preceding construction.
On the domain D∗ × �α , D∗ = D( s

2 , r
2 ) , the normal forms Nν converge to N∗ =

〈ω∗(ξ), y〉 + 〈Ω∗(ξ), zz̄〉 with frequencies satisfying

|〈k, ω∗(ξ)〉 + 〈l, Ω∗(ξ)〉| ≥ α

2

〈l〉d

Ak
, (k, l) ∈ Z,

on �α . Also, the transformations �ν converge to a Lipschitz family of real analytic,
symplectic coordinate transformations

�: D∗ × �α → D0,

because each �ν is of first order in y and second order in z, z̄ only, and the cor-
responding jets can be shown to converge uniformly on D(s/2) × �α with appro-
priate estimates – see [7]. The limit jet then defines � . Finally, one checks that
�∗ X H = X N∗ + X R∗ , where R∗ is of order 3 at Tn

0 . That is, the Taylor series ex-
pansion of R∗ only contains monomials yk zq z̄q̄ with 2 |k| + |q + q̄| ≥ 3. Thus, the
perturbed normal form is transformed back into another normal form up to terms of
higher order. In particular, the preserved invariant tori are all linearly stable.

5 Measure Estimates and Proof of Theorem B

In estimating the measure of the resonance zones it is not necessary to distin-
guish between the various perturbations ων and Ων of the frequencies, since only
the size of the perturbation matters. Therefore, we now write ω′ and Ω ′ for all of
them, and we have

|ω′ − ω| , Ω ′ − Ω −δ ≤ α, |ω′ − ω|L , Ω ′ − Ω L
−δ ≤ 1

2L
. (19)

Similarly, we write R′
kl rather than Rν

kl for the various resonance zones.
Let " = { l : 1 ≤ |l| ≤ 2 } . We can fix σ > 0 and a constant D ≥ 1 such that

〈l〉d ≥ D−1 |l|σ |l|δ . (20)

for l ∈ " , where |l|δ = ∑ ∣∣lj

∣∣ j δ . For example, one may take σ = min(d, d −1−δ)

and D = 9
2 , but such specific choices are not important here.

The proof of Theorem B requires a couple of lemmata.
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Lemma 3. There exists a positive constant β depending on Ω such that

|〈l, Ω ′(ξ)〉| ≥ 2β〈l〉d

on � for all l ∈ " , provided Ω ′ − Ω −δ ≤ α ≤ β .

Proof. Consider the case 〈l, Ω ′〉 = Ω ′
i − Ω ′

j , which is the subtlest. As to the
unperturbed frequencies, 〈l, Ω〉 �= 0 on � by assumption A, and

〈l, Ω〉
〈l〉d

→ 1

uniformly in ξ by assumption B. Hence there exists a β > 0 such that |〈l, Ω〉| ≥
3Dβ〈l〉d on � for all l ∈ " . The result for the perturbed frequencies then follows
with |〈l, Ω − Ω ′〉| ≤ |l|δ Ω − Ω ′ −δ ≤ Dβ |l|−1

σ 〈l〉d ≤ Dβ〈l〉d .

Lemma 4. If R′
kl(α) �= ∅ and α ≤ β , then

|k| ≥ ϑ〈l〉d

with ϑ = β

|ω|� + 1
.

Proof. If R′
kl(α) is not empty, then |〈k, ω′(ξ)〉 + 〈l, Ω ′(ξ)〉| < α〈l〉d at some

point ξ in � , and thus |k| |ω′(ξ)| ≥ |〈l, Ω ′(ξ)〉| − α〈l〉d ≥ 2β〈l〉d − α〈l〉d ≥ β〈l〉d

by Lemma 3.

Lemma 5. If |k| ≥ 8L M |l|δ , then

∣∣R′
kl(α)

∣∣ � c3
α

Ak
,

with c3 = ϑ−1Ln Mn−1ρn−1 and ρ = diam � .

Proof. We introduce the unperturbed frequencies ζ = ω(ξ) as parameters
over the domain % = ω(�) and consider the resonance zones R∆

kl = ω(R′
kl) in % .

Keeping the old notation for the frequencies we then have ω = id ,

|ω′ − id|L ≤ 1

2
, Ω ′ L

−δ ≤ 2L M

for the perturbed frequencies as functions of ζ by (19) and L M ≥ 1.
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Now consider R∆
kl(α) . Let φ(ζ ) = 〈k, ω′(ζ )〉 + 〈l, Ω ′(ζ )〉 . Choose a vector

v ∈ {−1, 1 }n such that 〈k, v〉 = |k| and write ζ = rv + w with r ∈ R , w ∈ v⊥ .
As a function of r , we then have, for t > s ,

〈k, ω′(ζ )〉|ts = 〈k, ζ 〉|ts + 〈k, ω′(ζ ) − ζ 〉|ts
≥ |k| (t − s) − 1

2 |k| (t − s) = 1
2 |k| (t − s)

and

∣∣ 〈l, Ω ′(ζ )〉|ts
∣∣ ≤ |l|δ Ω ′ L

−δ (t − s)

≤ 2L M |l|δ (t − s) ≤ 1
4 |k| (t − s).

Hence, φ(rv + w)|ts ≥ 1
4 |k| (t − s) uniformly in w . It follows that

{r : rv + w ∈ %, |φ(rv + w)| ≤ δ } ⊆ {
r : |r − r0(w)| ≤ 4δ |k|−1

}
with r0 depending miserably on w , and hence

∣∣R∆
kl(α)

∣∣ ≤ 4(diam %)n−1α· 〈l〉d

Ak |k|
by Fubini’s theorem. Going back to the original parameter domain � by the inverse
frequency map ω−1 and observing that diam % ≤ 2M diam � and 〈l〉d ≤ ϑ−1 |k| ,
the final estimate follows.

Now let

L∗ = 8DL M

ϑ
, K∗ = 8L M max

|l|σ ≤L∗
|l|δ ,

where ϑ and σ are defined in Lemma 4 and (20), respectively. Assume α ≤ β from
now on. The preceding three lemmata then lead to the following conclusion.

Lemma 6. If |k| ≥ K∗ or |l|σ ≥ L∗ , then

∣∣R′
kl(α)

∣∣ � c3
α

Ak
.

The same holds for k �= 0 , l = 0 .

Proof. If R′
kl(α) is not empty and |l|σ ≥ L∗ , then

|k| ≥ ϑ〈l〉d ≥ ϑ D−1 |l|σ |l|δ ≥ 8L M |l|δ .
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But if |l|σ ≤ L∗ , then |k| ≥ K∗ also implies |k| ≥ 8L M |l|δ . So in both cases,
Lemma 5 applies. The case l = 0 follows directly from Lemma 5.

Next we consider the “resonance classes”

R′
k(α) =

⋃∗
l∈"

R′
kl(α),

where the star indicates that we exclude the finitely many resonance zones with
0 < |k| < K∗ and 0 < |l|σ < L∗ . Note that R′

kl(α) is empty for k = 0 and α ≤ β

by Lemma 3.

Lemma 7. If d > 1 , then

∣∣R′
k(α)

∣∣ � c4α
|k|s
Ak

with s = 2

d − 1
and c4 = c3

ϑ s
.

Proof. By Lemma 4 we may restrict the star-union to 〈l〉d ≤ ϑ−1 |k| , and
since 2〈l〉d ≥ |l|d−1 ,

card
{

l : 〈l〉d ≤ ϑ−1 |k|} ≤ card
{

l : |l|d−1 ≤ 2ϑ−1 |k|} � |k|s
ϑ s

.

The result now follows with Lemma 6.

Recall that for d = 1 we have a κ > 0 and a constant a ≥ 1 such that∣∣∣∣Ωi − Ωj

i − j
− 1

∣∣∣∣ ≤ a

jκ
, i > j.

Lemma 8. If d = 1 , then

∣∣R′
k(α)

∣∣ � c5α
κ∗ |k|2

Aδ∗
k

,

with c5 = ac3

ϑ2
, where x∗ = |x |

1 + |x | for real x .

Proof. Write " = "+ ∪"− , where "− contains those l ∈ " with two non-
zero components of opposite sign, and "+ contains the rest. For l ∈ "+ we have
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〈l〉d = |l| , hence card
{

l ∈ "+ : 〈l〉d ≤ ϑ−1 |k|} � ϑ−2 |k|2 and

∣∣∣⋃∗
l∈"+ Rkl(α)

∣∣∣ � c5α
|k|2
Ak

as in the previous proof.
The minus-case, however, requires more consideration. For l ∈ "− we have

〈l, Ω ′〉 = Ω ′
i − Ω ′

j and 〈l〉d = |i − j | , and up to an irrelevant sign, l is uniquely
determined by the two integers i �= j . We may suppose that i − j = m > 0.
Then |〈l, Ω ′ − Ω〉| ≤ |l|δ Ω ′ − Ω −δ ≤ α(i δ + j δ) and |〈l, Ω〉 − m| ≤ amj−κ .
Therefore

R′
ki j (α) =

{
ξ : |〈k, ω′〉 + 〈l, Ω ′〉| <

αm

Ak

}

⊆ Qkmj
def=

{
ξ : |〈k, ω′〉 + m| <

αm

Ak
+ 2α

j−δ
+ am

jκ

}
.

Moreover, Qkmj ⊆ Qkmj0 for j ≥ j0 . For fixed m ≤ ϑ−1 |k| , we then obtain

∣∣∣⋃∗
i− j=m

R′
ki j (α)

∣∣∣ ≤
∑
j< j0

∣∣R′
ki j (α)

∣∣ + ∣∣Qkmj0

∣∣
� c3

(
j0α

Ak
+ α

j−δ
0

+ a

jκ
0

)
.

(21)

By choosing either j1−δ
0 = Ak or α j1+κ

0 = Ak , whichever gives the better estimate,
and using the assumption −δ ≤ κ we arrive at

∣∣∣⋃∗
i− j=m

R′
ki j (α)

∣∣∣ � ac3

(
α

Aδ∗
k

+ ακ∗

Aκ∗
k

)
� ac3

ακ∗

Aδ∗
k

.

Summing over m ,

∣∣∣⋃∗
l∈"− R′

kl(α)

∣∣∣ � ∑
|m|≤ϑ−1|k|

∣∣∣⋃∗
i− j=m

R′
ki j (α)

∣∣∣ � c5 |k| ακ∗

Aδ∗
k

.

The two cases together give the final estimate.

Proof of Theorem B. We can choose τ so that

∑
|k|≥K

|k|s
Ak

,
∑

|k|≥K

|k|2
Aδ∗

k
≤

∑
|k|≥K

1

1 + |k|n+1 �
1

1 + K
.
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For example,

τ ≥




n + 1 + 2

d − 1
for d > 1,

(n + 3)
δ − 1

δ
for d = 1.

(22)

Letting X = {(k, l) : 0 < |k| < K∗, 0 < |l|σ < L∗ } we then obtain

∣∣∣ ⋃
(k,l)/∈X

Rν
kl(α)

∣∣∣ ≤
∑
ν≥0

∑
|k|>Kν−1

∣∣Rν
k(α)

∣∣ � ∑
ν≥0

c6α
µ

1 + Kν−1
� c6α

µ

by the definition of the resonance classes Rν
k(α) with µ as in Theorem B and a constant

c6 of the form c̃(diam �)n−1 , where c̃ does not increase when the parameter domain
� decreases. This gives the required estimate. Finally, if δ ≤ 0, then |l|δ ≤ 2 for
all l and hence K∗ ≤ 16L M . This proves Theorem B.

Proof of Corollary C. By choosing γ̃ ≤ γ /2L M the frequencies ων and Ων

satisfy the assumptions of Theorem B, and thus

∣∣∣ ⋃
(k,l)/∈X

Rν
kl(α)

∣∣∣ → 0 as α → 0 .

Choosing, in the definition γ = γ0σ
t
0 , also γ0 ≤ 1

c3 K τ+1∗
in addition to (17), then

K τ+1
0 = 1

c3γ0
≥ K τ+1

∗ ,

so the remaining resonance zones are all defined in terms of the unperturbed frequen-
cies. Hence, by Assumption A, the monotonicity of R0

kl(α) in α and the boundedness
of � , we have

∣∣R0
kl(α)

∣∣ → 0 as α → 0 for each (k, l) ∈ X . Since X is finite, also

∣∣∣⋃
X

R0
kl(α)

∣∣∣ → 0 as α → 0 ,

which gives the claim. Finally, if δ ≤ 0, then K∗ ≤ 16L M .
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6 Proof of Theorem D

To prove Theorem D we precede the KAM iteration by one modified KAM step.
For this preparatory step the small divisor estimates (5) are used with a parameter

α̂ = α1−3w > α,

where w > 0 is chosen later. Moreover, for 〈l, Ω〉 = Ωi − Ωj , i �= j , we use the
modified estimate

∣∣〈k, ω〉 + Ωi − Ωj

∣∣ ≥ α̂

Ak
· |i − j |

min(iπ , jπ )
(23)

with positive π < p̄ − p . The upshot is that the measure estimates are improved at
the expense of deteriorating the regularity of the vector field.

Using the modified small divisor estimates in the solution of the linearized
equation we obtain

X F
λ
p̌,r,D(s−σ,r) ≤ aBσ

α̂
X R

λ
p̄,r D(s,r) , p̌ = p̄ − π > p.

Since α̂ > α , the KAM step applies under the same assumptions as before, but
now the estimates of X F are to be understood in terms of the weaker norm · p̌,r .
Accordingly, the vector field of the next perturbation P0 – the starting point for the
iteration – is also bounded in this norm only. Using the notation of section 4 we obtain

X P0

λ

p̌,ηr �
1

α̂σ tη2

(
X P

λ
p̄,r

)2 + η X P
λ
p̄,r �

1

(α̂σ t )!−1

(
X P

λ
p̄,r

)!

by choosing η3 = α̂−1σ−t X P
λ
p̄,r . With the assumption X P

λ
p̄,r ≤ γα , the choices

σ = σ0 , γ ≤ γ0σ
t
0 (as for the first step of the iteration) and α̂ = α1−3w we obtain

X P0

λ

p̌,ηr ≤ γ α̌, α̌ = α1+w < α.

For the frequencies ω0 , Ω0 of the new normal form N0 the usual estimates (14) hold
with −δ ≤ p̄ − p . It is not necessary, however, to keep track of the small divisor
estimates for the new frequencies, since the KAM scheme now starts from scratch,
with parameters α̌ and p̌ instead of α and p̄ , respectively.

We estimate the measure of the resonance zones eliminated in the first and the
subsequent steps. To this end fix τ as in (22) assuming −δ ≤ p̌ − p . For brevity,
the notation ‘�’ now includes also constants that depend on π and are of the same
form as the constants c3, . . . in section 5.
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Let 'α̂ = ⋃
Z Rs

kl(α̂) be the union of the resonance zones eliminated in the
preparatory step and defined in terms of the modified small divisor estimates.

Lemma 9.

|'α̂| � α̂λ, λ =
{

1 for π > 1,
κ

κ + 1 − π
for π < 1.

Proof. We first show that the estimate of Lemma 8 changes to

∣∣Rs
k(α̂)

∣∣ � α̂λ |k|2
Aλ

k
. (24)

The estimate for l ∈ "+ is the same as before, giving a contribution of the size

α̂
|k|2
Ak

. For l ∈ "− and π > 1 we have
∣∣Rs

ki j (α̂)
∣∣ � α̂

Ak jπ
, and the sum over all j

converges to a similar contribution. For l ∈ "− and π < 1, however, the modified
small divisor estimate (23) gives

Rs
ki j (α̂) =

{
ξ : |〈k, ω〉 + 〈l, Ω〉| <

α̂m

Ak jπ

}

⊆ Qkmj
def=

{
ξ : |〈k, ω〉 + m| <

α̂m

Ak jπ
+ am

jκ

}
.

There is no contribution from Ω ′−Ω here, since we are dealing with the unperturbed
frequencies. For fixed m we then obtain

∣∣∣⋃∗
i− j=m

Rs
ki j (α̂)

∣∣∣ � α̂

Ak

∑
j≤ j0

1

jπ
+ a

jκ
0
�

α̂

Ak jπ−1
0

+ a

jκ
0
�

α̂λ

Aλ
k

by choosing jκ+1−π
0 = Ak/α̂ . Then (24) follows by summing over m .

Summing (24) over k we obtain one contribution to the estimate of |'α̂| . The
other contribution is due to the finitely many resonance zones Rs

kl(α̂) with (k, l) ∈ X .
In each of them, 〈k, ω〉 + 〈l, Ω〉 is a nontrivial affine function of ξ , so one has∣∣Rs

kl(α̂)
∣∣ � α̂ . This proves the lemma.

The KAM iteration now starts with the parameter set �0 = �\'α̂ and parameter
α̌ = α1+w .
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Lemma 10. For sufficiently small α ,

|�0\�α̌| � max
(
α, α̌µ

)
, µ = κ

κ + 1
= κ∗.

Proof. We show that now the estimate of Lemma 8 changes to

∣∣R′
k(α̌)

∣∣ � max
(
α, α̌κ∗) |k|2

Aδ∗
k

.

Again, the estimate for l ∈ "+ is the same. For l ∈ "− , there is a contribution of
order α to the estimate of Ω ′ − Ω from the preparatory step. So instead of (21) we
have ∣∣∣⋃∗

i− j=m
R′

ki j (α̌)

∣∣∣ � j0α̌

Ak
+ α

j−δ
0

+ a

jκ
0

.

By proper choice of j0 this gives the bound max
(
α, α̌κ∗)

A−δ∗
k and hence the estimate

of
∣∣R′

k(α̌)
∣∣ . The rest of the proof is analogous to the preceding one. Just note that the

functions 〈k, ω′〉+〈l, Ω ′〉 are Lipschitz close of order α to nontrivial affine functions
of ξ .

The proof of Theorem D is now almost complete. The two lemmata combined
give

|�\�α| � α̂λ + α̌µ.

For π < p̄ − p ≤ 1 the right hand side is minimized by choosing w = π

4κ + 4 − π
,

so that
1 − 3w

κ + 1 − π
= 1 + w

κ + 1
,

hence α̂λ = α̌µ = αµ̃ with µ̃ = κ

κ + 1 − π/4
. This proves Theorem D.

7 Structural Stability

The results may be used to show that a certain class of hamiltonians is struc-
turally stable. Let

N = 〈ω(ξ), y〉 + 1
2

〈
Ω(ξ), u2+v2

〉 + Ñ

be a hamiltonian on some phase space Pa,p depending on parameters ξ ∈ � ⊂ Rn ,
� a closed bounded set of positive Lebesgue measure. Let us say that H is a
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regular normal form if the following three conditions are satisfied, with notations as
in section 1.

Condition A*: Nondegeneracy and Nonresonance. The map ξ �→ ω(ξ) is a
lipeomorphism between � and its image. Moreover, there exist positive constants
α0 and τ0 such that

|〈k, ω(ξ)〉 + 〈l, Ω(ξ)〉| ≥ α0〈l〉d

1 + |k|τ0
(25)

for all (k, l) ∈ Z and ξ ∈ � , where d is defined in condition B*.

Condition B*: Spectral Asymptotics. There exist d ≥ 1, δ < d − 1 and a
fixed sequence Ω̄ with Ω̄j = j d + . . . , such that Ωj = Ω̄j + Ω̃j , where the tails
Ω̃j define a Lipschitz continuous map Ω̃: � → 
−δ

∞ .

Condition C*: Regularity. For each ξ ∈ � the hamiltonian vector field X Ñ

defines near Tn
0 a real analytic map

X Ñ : Pa,p → Pa, p̄,

{
p̄ ≥ p for d > 1,

p̄ > p for d = 1,

which is Lipschitz in ξ and where Ñ is of order 3 at Tn
0 as defined at the end of

section 4.

Theorem E. A regular normal form N is structurally stable under sufficiently
small perturbations of the same regularity as Ñ . That is, for every such perturbation
H of N , there exists another Cantor set �∗ ⊂ � of positive Lebesgue measure and a
Lipschitz family of real analytic, symplectic coordinate transformations � near Tn

0 ,
such that �∗ X H = X N∗ with another regular normal form N∗ with respect to �∗ .

Proof. Let N be a regular normal form. Then assumptions A and B are satis-
fied, and the parameters L , M , τ and κ are fixed. Theorem B implies that for the
union of resonance zones R(α) = ⋃

Rν
kl(α) ⊂ � defined in terms of arbitrary but

sufficiently small perturbations of the frequencies ω and Ω as in Theorem A, we
have |R(α)| → 0 as α → 0. Hence, the measure of any of the sets �α in Theorem A
converges uniformly to the measure of � as α tends to zero.

Now fix α sufficiently small to make this measure positive. By condition C*,

X Ñ r,D(s,r)
+ α

M
X Ñ

L

r,D(s,r)
< 1

2 γ̃ α (26)

for all small positive r and s . Then Theorems A and B apply to every perturbation
H = N + P of N , where P is of the same regularity as Ñ and satisfies the same



Section 8: Concluding Remarks 29

estimate (26) for some positive r and s . We obtain a Cantor set �∗ ⊂ � of positive
measure and, by the remark at the end of section 4, a family of real analytic, symplectic
coordinate transformations � near Tn

0 such that �∗ X H = X N+ + X R+ , where R+ is
of order 3 at Tn

0 . Moreover, the frequencies of N+ satisfy the diophantine conditions
(25) with parameters α/2 and τ . It follows that the hamiltonian N∗ = N+ + R+ is
a regular normal form.

8 Concluding Remarks

Remark 1. The regularity condition may be written in the form

p − p̄ < d − 1, p − p̄ ≤ 0.

In the framework of differential operators on Sobolev spaces, d and p − p̄ may be
identified with the orders of the linear and nonlinear part of the associated differential
operator L , respectively, Thus, L has to be quasi-linear by the first condition, and
its nonlinear part has to be bounded by the second condition.

The first assumption is rather natural. Nonlinearities of the same order as the
linearity may cause the blow up of every nontrivial solution [6], so quasi-periodic
solutions may not exist at all. The second condition, however, is not necessary, but
makes the proof and the result more transparent. It happens to be satisfied by the
nonlinear Schrödinger and wave equations in [5,8]. It may be removed for d > 1 at
the expense of a more convoluted proof, so that the theorem also applies for example
to perturbations of the KdV equation. See [3] for more details as well as a forthcoming
publication by Sergej Kuksin.

Remark 2. The results of this paper improve on the results obtained in [7] in
many ways: – the phase space can be chosen appropriately to suit applications to
nonlinear partial differential equations; – the nondegeneracy condition is weaker; –
the dependence on the parameters ξ need only be Lipschitz; – the frequencies Ω

may only grow linearly, thus violating the finiteness condition in [7].
Moreover, a flaw in the proof of Lemma 8.1 in [7] is fixed, that was pointed out

by H. Rüssmann. There not only the t -derivative of the function �(w+ tv) , but also
its Lipschitz semi-norm needs to be controlled in order to obtain the desired measure
estimate. Such an estimate is provided here.

Due to the weaker nondegeneracy assumption the result above gives no con-
trol over the rate of convergence in the measure estimate (2). However, with more
information about the unperturbed frequencies such control is easily obtained. For
example, suppose that ω and Ω are differentiable on � , that ω: � → % is a dif-
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feomorphism, and that for some α0 > 0, R0
kl(α0) = ∅ for each (k, l) ∈ X for which

k lies in the closed convex hull of the set of gradients
{
∂ζ 〈l, Ω � ω−1(ζ )〉 : ζ ∈ %

}
.

Then the arguments of Lemma 5 and Lemma 8.1 in [7] show that∣∣∣⋃
X

R0
kl(α)

∣∣∣ ≤ c̃ρn−1α,

recovering the result of [7].

Remark 3. We finally compare our results with those of Kuksin in [4]. By
and large, the basic KAM theorems are the same, with the same range of applica-
tions to partial differential equations. There are, however, some differences: – the
nondegeneracy condition of Assumption A is weaker, as a certain collection of ex-
act resonances is only required to be of measure zero; – we can allow for Sobolev
spaces 
a,p of exponentially decreasing sequences by letting a > 0, which avoids
a posteriori arguments about the analyticity of the solutions obtained by the KAM

theorem; – the dependence of the measure estimates on the asymptotic properties of
the eigenvalues λj in the case d = 1 is made explicit in terms of the exponent µ in
Theorem B. Indeed, in [4] this point was overlooked, and the estimates for this case
such as (4.11) on page 77 are not correct. This was later corrected in An Erratum
available from Sergej Kuksin; see also Appendix 2 in [1].

Another difference is in the proofs. Here, in Theorem A as well as in its proof,
the unperturbed hamiltonian N describes a linear system of equations, and higher
order integrable terms are simply considered as perturbations as well. In Kuksin’s
set up, the unperturbed system also may contain nonlinear terms. This considerably
complicates the handling of the linearized equation, and many more careful estimates
are required. On the other hand, it provides some greater flexibility in applying the
results.

This, however, seems to be of advantage only in the subtle case of small am-
plitude solutions u of the nonlinear wave equation

utt = uxx − mu − au3 + O(u5), m > 0, a �= 0,

on [0, π ] . Here, one has d = 1, and the problem is to find sets of nonresonant
frequencies of positive measure in the presence of a “small twist”. Still, the results
of Bobenko and Kuksin [1] for this equation are not better than in [8], because on
the other hand they had to cope with worse asymptotic properties of the frequencies,
namely κ = 1 instead of κ = 2 as in [8]. – Combining both approaches, one could
also handle O(u4) -terms. But such a small improvement requires quite a big effort.
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A Utilities

Lemma A.1. If A = (Ai j ) is a bounded linear operator on 
2 , then also
B = (Bi j ) with

Bi j =
∣∣Ai j

∣∣
|i − j | , i �= j,

and Bii = 0 is a bounded linear operator on 
2 , and ‖B‖ ≤ π√
3

‖A‖ .

Proof. By the Schwarz inequality, we have

∑
j≥1

∣∣Bi j

∣∣ , ∑
i≥1

∣∣Bi j

∣∣ ≤ ‖A‖
√∑

k �=0

1

k2
= λ ‖A‖ , λ = π√

3
,

for all i and j . Hence, again by Schwarz,

‖Bv‖2 ≤
∑

i

(∑
j

∣∣Bi j

∣∣ ∣∣vj

∣∣)2

≤
∑

i

(∑
j

∣∣Bi j

∣∣) (∑
j

∣∣Bi j

∣∣ ∣∣vj

∣∣2
)

≤ λ ‖A‖
∑

i

∑
j

∣∣Bi j

∣∣ ∣∣vj

∣∣2

≤ λ2 ‖A‖2
∑

j

∣∣vj

∣∣2 = λ2 ‖A‖2 ‖v‖2 .

Lemma A.2. Let F ⊂ Rn be closed and u: F → R a bounded Lipschitz
continuous function. Then there exists an extension U :Rn → R of u , which preserves
minimum, maximum and Lipschitz semi-norm of u .

Proof. Let λ = |u|LF , and define

ũ(x) = sup
ξ∈F

(u(ξ) − λ |x − ξ |)
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for x ∈ Rn . This is an extension of u to all of Rn . By the triangle inequality, ũ(x) ≥
u(ξ) − λ

∣∣x ′ − ξ
∣∣ − λ

∣∣x − x ′∣∣ for all ξ ∈ F and hence ũ(x) ≥ ũ(x ′) − λ
∣∣x − x ′∣∣ .

Interchanging x and x ′ , we get

∣∣ũ(x) − ũ(x ′)
∣∣∣∣x − x ′∣∣ ≤ λ.

It follows that |ũ|L
Rn = |u|LF . Replacing ũ above maxF u by maxF u does not change

its Lipschitz semi-norm, and similarly below minF u . The resulting function U has
all the required properties.

Let E and F be two complex Banach spaces with norms ‖ · ‖E and ‖ · ‖F , and
let G be an analytic map from an open subset of E into F . The first derivative dvG
of G at v is a linear map from E into F , whose induced operator norm is

‖dvG‖F,E = max
u �=0

‖dvG(u)‖F

‖u‖E
.

The Cauchy inequality can be stated as follows.

Lemma A.3. Let G be an analytic map from the open ball of radius r around
v in E into F such that ‖G‖F ≤ M on this ball. Then

‖dvG‖F,E ≤ M

r
.

Proof. Let u �= 0 in E . Then f (z) = F(v + zu) is an analytic map from the
complex disc ‖z‖ < r/ ‖u‖E in C into F that is uniformly bounded by M . Hence,

‖d0 f ‖F = ‖dv F(u)‖F ≤ M

r
· ‖u‖E

by the usual Cauchy inequality. The above statement follows, since u �= 0 was
arbitrary.

Let V be an open domain in a real Banach space E with norm ‖ · ‖ , � a subset
of another real Banach space, and X : V × � → E a parameter dependent vector
field on V , which is C1 on V and Lipschitz on � . Let φt be its flow. Suppose there
is a subdomain U ⊂ V such that φt : U × � → V for −1 ≤ t ≤ 1.
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Lemma A.4. Under the preceding assumptions,

‖φt − id‖U ≤ ‖X‖V ,

‖φt − id‖L
U ≤ exp (‖DX‖V ) ‖X‖L

V ,

for −1 ≤ t ≤ 1 , where all norms are understood to be taken also over � .

Proof. Let 0 ≤ t ≤ 1. We have φt − id = ∫ t
0 X � φs ds , so the first estimate

is clear. To prove the second one, let ∆φt = φt ( · , ξ)−φt ( · , ζ ) for ξ, ζ ∈ � . Then

∆(φt − id) =
∫ t

0
∆

(
X � φs

)
ds

=
∫ t

0
∆X � φs ds +

∫ t

0

(
X � φs( · , ξ) − X � φs( · , ζ )

)
ds,

hence

‖∆(φt − id)‖U ≤
∫ t

0
‖∆X‖V ds +

∫ t

0
‖DX‖V ‖∆φs‖U ds

≤ ‖∆X‖V + ‖DX‖V

∫ t

0
‖∆(φs − id)‖U ds.

With Gronwall’s inequality it follows that

‖∆(φt − id)‖U ≤ ‖∆X‖V exp
(
t ‖DX‖V

)
.

Dividing by the norm of ξ − ζ and taking the supremum over ξ �= ζ in � the
Lipschitz estimate follows.
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