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A KAM-Theorem
for some
Nonlinear Partial Differential Equations

JURGEN POSCHEL

I ntroduction

In this paper a KAM-theorem about the existence of quasi-periodic motionsin
some infinite dimensional hamiltonian systemsis proven. In[5] and [8] thistheorem
is applied to some nonlinear Schrodinger and wave equation on the interval [0, ],
respectively, and we refer to these sources for motivation and background. Here we
concern ourselves with the basic KAM-theorem, which isthe very foundation of these
applications.

The first theorem of thiskind is due to Eliasson [2], who proved the existence
of invariant tori of less than maximal dimension in nearly integrable hamiltonian
systems of finite degrees of freedom. Thereafter, the result was extended to infinite
degrees of freedom systems by Wayne [10], the author [7] and, independently of
Eliasson’s work, by Kuksin — see [4] and the references therein. We refer to [4,7]
for more historical remarks, and to [4] for further applications. The relations of the
present paper to [4] and [7] will be discussed in the last section.
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2 Section 1;: Statement of Results

1 Statement of Results

We consider small perturbations of an infinite dimensional hamiltonian in the
parameter dependent normal form

N= Y w@y+3) 2EU+0)

1<j=n j=1
on a phase space
PEP =T" x R" x £2P x 2P 5 (X, y, u,v),

where T" isthe usual n-toruswith 1 < n < oo, and ¢2P isthe Hilbert space of all
real (later complex) sequences w = (w1, wo, ...) With

2 22 j
lwliZ o= lwjl*j?Pe? < oo,

j=1

wherea > 0and p > 0. Thefrequenciesw = (w1, ..., wn) and 2 = (§21, 22, ...)
depend on n parameters & € I1 C R", IT aclosed bounded set of positive L ebesgue
measure, in away described below.

The hamiltonian equations of motion of N are

X:w($)9 y:O’ U:Q(S)U, U:—Q(S)U,

where (2u); = £2;u;. Hence, for each & € IT, there isan invariant n-dimensional
torus T3 = T" x {0, O, 0} with frequencies w (&), which has an elliptic fixed point in
its attached uv -space with frequencies £2(£). Hence T3 islinearly stable. The aim
isto provethe persistence of alarge portion of thisfamily of linearly stable rotational
tori under small perturbations H = N + P of the hamiltonian N. To this end the
following assumptions are made.

Assumption A: Nondegeneracy. The map & — w(&) is a lipeomorphism
between IT and itsimage, that is, ahomeomorphismwhichisLipschitz continuousin
both directions. Moreover, for al integer vectors (k, 1) € Z" x Z*° with1 < || < 2,

(€1 (k,w®)+(,26)=0}[=0

and
(I, $2(¢)) #0 onII,

where | - | denotes Lebesgue measure for sets, |I| = ), |I; | for integer vectors, and
(-, -) istheusual scalar product.
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Assumption B: Spectral Asymptotics. Thereexistsd > 1 and § < d—1 such
that

Qi) =+ -+ 03,

where the dots stand for fixed lower order termsin j, alowing aso negative expo-
nents. More precisaly, there exists a fixed, parameter-independent sequence 2 with
2; =9+ suchthat thetails 2; = 2; — 2; giveriseto aLipschitz map

Q01— E;oa,

where ¢P, is the space of all real sequences with finite norm |wl|, = sup; |wj| jP.
— Note that the coefficient of j¢ can always be normalized to one by rescaling the
time. So thereisno loss of generality by this assumption.

Assumption C: Regularity. The perturbation P isreal analytic in the space
coordinates and Lipschitz in the parameters, and for each & € IT its hamiltonian
vector field Xp = (P, —Px, P,, —P,)T definesnear 7 area analytic map

Xp: PaP _ Pap {I@Zp ford > 1,
) ’ p>p ford=1

Wemay also assumethat p— p <8 <d — 1 byincreasing §, if necessary.
To make this quantitative we introduce complex Tg -neighbourhoods

. 2
D(s,r): lImx] <s, |yl <r% ullap+llvllap <T,

where | - | denotesthe sup-normfor complex vectors, and wei ghted phase spacenorms

1 1 1
IWI, = W, = [X] + 2 Y1+ r_ IUlla,p + r_ IVIlap D
for W = (X, Y, U, V). Thenweassumethat Xp isreal analyticin D(s, r) for some
positive s, r uniformly in & withfinitenorm [Xpl, psr) = sup |Xpl; , and that the
same holds for its Lipschitz semi-norm D(s.r)

Age X
ol = sup 125Xl
g2 1§ —¢|
where Az Xp = Xp(-,&) — Xp(+, ¢), and where the supremum is taken over IT.

The main result decomposes into two parts, an analytic and a geometric one,
formulated as Theorem A and B, respectively. Intheformer the existence of invariant
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tori is stated under the assumption that a certain set of diophantine frequenciesis not
empty. The latter assures that thisisindeed the case.
To state the main results we assume that

ol + 12155 <M < o0, | <L < oo,

_11L
‘a)(l’l)

where the Lipschitz semi-norms are defined analogously to |Xp|~. Moreover, we
introduce the notations

(I'g = max (1,

>

where T > n + 1 isfixed later. Finaly, let Z = {(k,l1) #0, ||| <2} C Z" x Z*°.

), Ac=1+[K",

Theorem A. Suppose H = N + P satisfies assumptions A, B and C, and

o L
€ = |xP|r,D(s,r) + M IXPIF,D(SJ) =va,

where 0 < o < 1 isanother parameter, and y dependson n, t and s. Then there
exists a Cantor set I1, C II, a Lipschitz continuous family of torus embeddings
®: T" x I1, — P*P, and a Lipschitz continuous map w,: I1, — R", such that for
each & in I1, themap & restricted to T" x {&} isareal analytic embedding of a
rotational torus with frequencies w, (¢) for the hamiltonian H at &.

Each embedding isreal analyticon |[Imx| < 3, and

(0%
|® — Pol + 7 1® — Dol < ce/a,

o L
Iw*—w|+mlw*—w| < Ce,

uniformly on that domainand I1,, , where ®q isthetrivial embedding T" x IT — T3,
and ¢ < y ! depends on the same parametersas y .

Moreover, there exist Lipschitz maps w, and 2, on IT for v > 0 satisfying
wo=w, 20 = 52 and

o
|wv_w|+mlwv_0)|L = Ce,
o
|Qv_9|75+mlgv_9|£}5 = Ce,

such that TI\TI, C |J R} (@), where

|
Rey (o) = {s € TT: [k 0y (®)) + (I, 2,(E))] < “<A>d }

k
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and the union is taken over all v > 0 and (k,|) € Z such that |k| > Kg2'~* for
v > 1 withaconstant Ko > 1 depending onlyon n and 7.

Remark1. Wewill seeat theend of section 4 that around eachtorusthereexists
another normal form of the hamiltonian having an elliptic fixed point in the uv -space.
Thus all the tori are linearly stable. Moreover, their frequencies are diophantine.

Remark 2. Ther6le of the parameter « isthe following. In applications the
size of the perturbation usually depends on a small parameter, for example the size
of the neighbourhood around an elliptic fixed point. One then wants to choose « as
another function of this parameter in order to obtain useful estimates for |IT\I1,]|.
See [5,8] for examples.

Remark 3. Theorem A only requires the frequency map & — w(&) to be
Lipschitz continuous, but not to be a homeomorphism or lipeomorphism. This only
matters for Theorem B.

Wenow verify that the Cantor set I, isnotempty, andthatindeed |IT\I1,| — O
as « tendsto zero. Inthecase d = 1, let « bethe largest positive number such that
the unperturbed frequencies satisfy

2 — 2
¥:1+O(J_K)a i>j’

i —
uniformly on IT. Without lossof generality, wecanassumethat —§ < « byincreasing
8, if necessary.

Theorem B. Let w, and £2, for v > 0 be Lipschitz mapson IT satisfying

1
|wv_w|,|9v_9|—5§aa |wv_w|L,|~Qv_~Q|ig§Z»

and define the sets Ry, (o) asin Theorem A choosing ¢ asin (22). Then there exists
afinite subset X' C Z and a constant € such that

1 ford > 1,

v = n—1 _
‘U k|(a)‘50p o, w = ford =1

(hgx k+1

for all sufficiently small «, where p = diamI1. The constant ¢ and the index set X
are monotone functions of the domain IT: they do not increase for closed subsets of
IT. Inparticular, if § <0,then X C {(k,]):0< |k| <16LM}.
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By dlightly sharpening the smallness condition the frequency maps of Theo-
rem A satisfy the assumptions of Theorem B, and we may conclude that the measure
of all sets R}, (o) tendsto zero.

Corollary C. If in Theorem A, the constant y is replaced by a smaller con-
stant y < y/2LM depending on the set X, then

|H\Ha|§‘Ulezl(a)‘—>0 asa — 0. )

14

In particular, if § < 0, thenone may take y = 2L

The point of choosing y isto make sure that max 1)ex |kl < Ko, so that for
(k, 1) € X we only need to consider the sets R («), which are defined in terms of
the unperturbed frequencies. Then |RY («)| — 0 as & — 0 by Assumption A.

In the applications [5,8] the unperturbed frequencies are in fact affine functions
of the parameters. Inthe case d > 1, as it happens in the nonlinear Schrodinger
equation, we then immediately obtain |TT\IT,| < €o" t«. Inthecase d = 1,
however, o appears with the exponent © < 1, and it happens that for the nonlinear
wave equation the present estimate is not sufficient to conclude that the set of bad
frequenciesis smaller than the set of all frequencies (which also depends on a small
parameter). The following better estimate is required, which we only formulate for
the case needed.

Theorem D. Suppose that in Theorem A the unperturbed frequencies are
affine functions of the parameters. Then

M\IT,| < &0 ta”, =
M| = o™ H * ford =1,

{ 1 ford > 1,
k+1—m/4

for all sufficiently small o, where 7 isany number in0 <7 < min(p—p,1). In
this case the constant € also dependson = and p — p.

The rest of the paper consists almost entirely of the proofs of the preceding
results, which employs the usual Newton type iteration procedure to handle small
divisor problems. In section 2 the relevant linearized equation is considered, and in
section 3 one step of theiterative schemeisdescribed. Theiteration itself takes place
In section 4, and section 5 providesthe estimates of the measure of the excluded set of
parameters. In section 6 some refinement of these measure estimates is undertaken,
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and in section 7 wefinally observe that the resultsimply that a certain class of normal
forms is structurally stable. The paper concludes with a few remarks relating this
paper to previous work, in particular [4] and [7].

2 Thelinearized equation

The KAM-theorem is proven by the usual Newton-type iteration procedure,
which involves an infinite sequence of coordinate changes and is described in some
detail for example in [7]. Each coordinate change @ is obtained as the time-1-map
X‘F\tzl of a hamiltopian vector field Xg. Its generating hamiltonian F as well
as some correction N to the given normal form N are a solution of the linearized
equation

{(F.N}+ N =R,

which is the subject of this section. One then finds that & takes the hamiltonian
H=N+RintoHo®=N,+R,,where N, = N + N isthe new normal form
and R, = fol{(l—t)N +tR, F} o XL dt the new error term.

We suppose that in complex coordinates z = %(u —iv)and z= %z(u +iv)
wehave N = (w (&), y) + (£2(§), zz) and

R= > ) Ramgqe*’y"a7, 3
2imi+[g+G|<2 Kk

with coefficients depending on & e I, such that Xg: P3P — P2P jsrea analytic
and Lipschitz in £ . The mean value of such ahamiltonian is defined as

[R]: Z Romqq ymzqzq

Im+[gl=1

and is of the sameformas N.

Lemmal. Supposethat uniformlyon IT,

|
K, () + (I, @) = a %, k1) e,

where « > 0 and Ax > 1. Then the linearized equation {F, N} + N = R hasa
solution F, N thatisnormalized by [F] = 0, [N] = N, and satisfies
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26 B,
IXxile < IXRly » IXel -0 = == IXal ,

28 B, M
IXQIE < IXRlF.  IXelF, < » Oxmf+a|xw),

for 0 < 0 <s,where M = |w|* + [2|% and BZ = 2"y, (1 + |k|)?Af g2k,
andtheshorthands |-|, = |- l;.psr) @d |-l _y =1 lr.pis—0.r) areused.

Theestimatesholdinfactwith | 22|74 inplaceof [$2|%;, but thisslightly better
result is not needed later. Concerning the dependence on o the above estimates are
very crude but sufficient for our purposes. Much better estimates have been obtained
by RiUssmann — see for example [9].

Proof. Writing expansionsfor F and N analogoustothat for R and using the
nonresonance assumptions one finds by comparison of coefficientsthat N = [R] and

kaqq _
| _ for|k|+1q— 6| #0,
Fangg = | (K.) + (@ - 4. Q) a-al=
0 otherwise,

for al &, whichisnot indicated. With the chosen normalization this solution is also
unique.

For the estimates we decompose R = R° 4+ R! + R?, where R} comprisesall
termswith |q + G| = j, and furthermore

RO — ROO,
R =(RY, z) + (R™, 2,
R* = (R®z 2) + (R"z 2) + (R%z, 2),

where the R depend on x, £, and R® depends in addition on y . With asimilar
decomposition of F and N, the linearized equation decomposes into

(FI.N}=RI—[R]].  NT=[RI],

and it suffices to discuss each term individually. In the following we do this for
R= R and R = RM. To shorten notation, let || - || = [| - [l 5-
Consider theterm F = F1°. Wehave R = R,|, ;o and thus

” R”D(s) =T IXRlr,

where D(s) = {|Imx| < s}. Thisisan analytic map into ¢2P with a Fourier series
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expansion whose coefficients R, satisfy the usual L2-bound

=12 =12
D[R <2 R[5 -

k
Each coefficient is a Lipschitz map IT — ¢2P, and the corresponding coefficient of
F isgiven by

Re.j

B = el
“IT ko) + 2

j>1

By the small divisor assumptions we have |(k, ) + £2j| > a/A¢ and thus || Fy| <
(Ax/a) | Re| uniformly on IT. It follows that

I r—— Zk: | | €M)

1 —2|k|o 5 112 S BU -
< A IR < T Rl

1,. B,
or r ”F”D(S—o) = o IXRI; -

To control the Lipschitz semi-normof F, let 8 j = (K, w) +£2; and A = Ag,
for £,¢ € I1. Thenwehave iAFj = A} Rej) = 8 [(E) AR + Rej (0) A8
and

_1 Ady | (k, Aw) + AL

S+ = - )
DT80 T ki (E)j ()

The small divisor assumptions give |8 ;| > «j¢/Ac. Therefore,

A d
a8t = =% (K 14w] + |42 i)

and hence

2
|akd] = 2 AR + 5 (1401 +1421,) R

Summing up the Fourier series as before we obtain

. B, , . B, .
”AF H D(s—0) = o ”ARH b T o2 (lAw] +14£2]_5) ” R”D(s) .
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Dividing by |& — ¢| and taking the supremum over £ # ¢ in I1 we arrive at
1,..¢ B, s M
FIF LGy = o (Xl 4 2 1Xal ).

Consider now theterm F = F1. We have R = 9,0,R, hence by the general-
ized Cauchy inequality of LemmaA.3,

IRellps,ry = I1XRlr

. 1
” R” D(s) = r

in the operator norm for bounded linear operators ¢2P — ¢ P Thisisequivalent to
the statement that R = (vj R jw;) isabounded linear operator of ¢2 into itself with
operator norm [|Rlllp = | R b » Where vi, w; arecertain weightswhose explicit
form does not matter here.

Expanding R into its Fourier series with operator valued coefficient R, we
have, as before, " I Rcll? €?¥S < 27 IRl - The corresponding coefficient of

F« = (F,j) isgiven by

o KI+li—jl#0,

while Fg j; = 0, and the coefficients Ry j; are absorbed by N. The small divisor
assumptions imply that |(k, w) + £ — 2| > a1+ |i — jI)/Ac, since d > 1.
Hence, by Lemma A.1 we obtain |||l < 3(Ax/a) IRl uniformly in IT, and
summing up as before, || lllps_q) < 3(Bs/a) IRl p(s - Going back to the operator
norm | - || and multiplying by z we arrive at

3B,

1, .
I'_ H FZ”D(S—Q’J‘) = 7 | XRl; -

The Lipschitz estimate follows the same lines as the one for F. So we con-
sider iAlfk,ij = Sk_,ilelik,ij + Iik,ijASk_,ilj with 8k,ij = (k,w) + 2 — .Qj. Since

2[i9—jd =i — jl (9t 4 j971), the small divisor assumptionsimply
I (L DY I TR
= 2A¢ ’ .
We thus obtain

A2
4805 | = 2" (Kl 140l + 214821 4) 7=
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and
~ A ~ 252
ARl < ;k Il ARl + K (Ikl |[Aw| + |AS2|_ a) IRl -
Thisleadsto
- L AV T
D(s—o) — ; D(s) a2 D(s)
and

1,. 2 2°B, M
r ” FZ”D(s—a,r) =2 (lXerL T IXer) :

Theterms F1° and F! exhibit all the difficultiesinvolved with infinitely many
degrees of freedom. All the other components F'/ admit the same estimates, or even
better ones. To each component of the hamiltonian vector field Xg, at most eight
such terms are contributing. The estimates of Xg thus follow.

Theestimatesof Xy follow from the observationthat N, isthe T"-mean value
of Ry, and N; isthe diagonal of the T"-mean value of Ry. I

For our purposes the estimates of Lemma 1 may be condensed as follows. For
A > 0, define

IXI* = [XI; + A IXIF

Since we will always use the symbol “ A’ in this réle, there should be no confusion
with exponentiation. Also, |- | standsfor either |- |, or |-|r’;.

Lemma2. The estimatesof Lemma 1 imply that

* * A
|XN|r,D(s’r) = IXRIr,D(s,r) ) IXFIr,D(s—a,r) IXRIr D(s,r)

for 0 <o <sand 0 < A < a/M with some absolute constant a. Moreover, if
Ac = 1+ [K|7, then
b
Bs = it )

with some constant b > 1 dependingon n and t.
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3 The KAM Step

At the general v-th step of the iteration scheme we are given a hamiltonian
H, = N, + P,,where N, = (0, (§), y) + (£2,(&¢), zz) isanormal formand P, isa
perturbation that isreal analyticon D(s,, r,). Both are Lipschitzin &, which varies
over aclosed set 1, onwhich |, |* + [£2,]%, < M, and

|
[, 0 (8)) + (1, 20(8)] Za’u%, k1) e2. (5)

For the duration of this section we now drop the index v and write ‘ +’ for
‘v + 1’ to simplify notation. Thus, P = P,, P, = P, 1, and so on. Also, we write
< in estimates in order to suppress various multiplicative constants, which depend
only on n and t and could be made explicit, but need not be. Indeed, the only
dependence on t enters through the constant b in (4).

To perform the next step of the iteration we assume that the perturbation is so
small that wecanchoose 0 < < : and 0 < o <'s, o < 1, such that

ao'n?

Co

o
IXpl D) + M IXpl oy < (6)
wheret = 2t + n+ 2 and ¢y is some sufficiently large constant depending only on
n and . Ontheother hand, for the KAM step we need not assume that the frequency
map « isahomeomorphism or lipeomorphism.

Approximating P.  Weapproximate P by its Taylor polynomial Riny, z, z
of the form (3). This amounts to corresponding approximations of the partials
Px, Py, Pz, P; which constitute the vector field Xp. Since P isanalytic, all these
approximations are given by certain Cauchy integrals, and the estimates are the same
asin afinite dimensional setting. We obtain

IXRIF o < 1Xplr IXr = Xp Ly ps.anm < 11Xpl (7
Solution of the linearized equation.  Since the small divisor estimates (5) are

supposed to hold, we can solve the linearized equation {F, N} + N = R with the
help of Lemmata 1 and 2. Together with the preceding estimate of Xg we obtain

1
* % Py N
ller,D(s,r) < IXelr . IXFlfps—or) < aot-1 IXplr 8

for 0 < A < «/M. Furthermore we have the estimate |D Xk, ps-20r/2) <
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o " IXEl,. D(s—o.r) » Where on the left we use the operator norm

1Ll s = sup 'Vl
" W0 |W|p,s ’

with | -], defined in (1), and |-|,, defined analogously. This follows by the
generalized Cauchy estimate of Lemma A.3 and the observation that every point in
D(s —20,r/2) hasat least | - |, -distance o/2 to the boundary of D(s —o,T).

Coordinate transformation.  The preceding estimates and assumption (6)
imply that

1 n?

— | XE _ ,IDXE _ < — 9
o | Ir,D(s o,r) I Ir,r,D(s 20,r/2) Co ( )

issmall. Hence the flow X} existson D(s — 30,r/4) for —1 <t < 1 and takes
thisdomain into D(s — 20,1 /2), and by LemmaA.4 we have

t . % *
|XF o Idlr,D(s—Ba,r/4) <IXelps-on (10)
for —1 <t < 1. Furthermore, by the generalized Cauchy estimate,

*

1 k
|DXtF - Ilr,r,D(s—4a,r/8) < o |XF|r,D(S—o,r)’ (11)
sinceany pointin D(s—4o, 1 /8) has| - |, -distancegreater than o /32 totheboundary
of D(s— 30,r/4).

Thenewerrorterm.  Subjecting H = N+ P tothesymplectictransformation
® = X}|,_, weobtain the new hamiltonian H o ® = N, + P, on D(s — 50, nr),
where N = N+ N and P, = (P — R)o Xt + 5 {R(1), F} o Xk dt with R(t) =
(1 —t)N 4+ tR. Hence, the new perturbing vector field is

1
Xp, = (X§)*(Xp — XR) +/ (XE)*[Xray, Xe] dt.
0

We will show at the end of thissectionthatfor 0 <t <1,

T \* A A
|XEY] bssomry < 1Y lir.D(s—20,401) - (12)

Wealready estimated Xp — Xr, SOit remainsto consider thecommutator [ Xr), Xg].
To shorten notation we write R for R(t).



14  Section 3: The KAM Sep

On the domain D(s — 20,1 /2) we have, using p > p,

I[XRr, XE]l; < IDXR-Xgl; + IDXE-Xgl,
= |DXR|r,r IXFIr + IDXFIr,r IXRIr .

Using the generalized Cauchy estimate and (7) we get

-1
I[XR, XF]lr,D(s—Zo,r/Z) <o " Xpl |XF|r,D(s—o,r) .
Similarly, on the same domain,

I[Xr, XE]IF < IDXRIS IXEl + IDXRI IXEIF
+ IDXEl IXRly + IDXel, IXRIF

<o MXplF IXElr . Ds—o.r) + 0 T 1Xpl, |XF|€D(s—a,r) :
Finally, we have |Y]* < n~2|Y|> for any vector field Y. So atogether we obtain
y nr r y

1

A A
I[XR, Xellyr Dis—20r/2) < 2 I[Xr, XEIlF (s—20.r/2)

1 A A 1 Y
< 0_772 IXPIr IXFIr,D(s_g’r) < aatnz (IXPIr)

for 0 < 1 < «a/M. Collecting al terms we then arrive at the estimate

1

A 22 N
|XP+|'7V,D(S—50,nr) < aotn? (IXF’lr) +n[Xpl;, (13)

0 <A < a/M,for the new error term.

The new normal form.  Thisis Ny = N 4+ N with [Xgl* < |Xpl’. This
implies |®] < [Xpl, and [|2z|5; < r [Xp|, on D(s,r), hence |2]5-, < IXpl;
on IT. The same holds for their Lipschitz semi-norms. With —§ < p — p we get

6]+ 12]_s < IXpl . 16F 4 1215 < IXpl~. (14)

In order to bound the small divisorsfor the new frequencies w, = w+ ® and 2, =
2 + £ for |k| < K, K to be chosen later, we observe that s < Ilg-1 < 2{l)q,
hence

1k, @) + (I, £2)] < |kl @] + |5 162]_s
()

< K[ Xpl; {I)a < &E’
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with some & >- A | Xpl, , where Ay = K max; <k Ax and the dot represents some
constant. Using the bound for the old divisors, the new ones then satisfy

I
[k, w()) + (I, 248 = “+<pf’ k| < K, (15)

on IT with oy = o — &. Inthe next section we will make sure that « is positive.

Proof of estimate (12). Fix ® = XL and consider ®*Y = D®~1Y o ®.
Then ® maps U = D(s — 50, nr) into V = D(s — 4o, 2nr) by the estimate (9).
Hence, [®*Y],,y < |DCI>‘1|m’nr’V Y1,y and

Dot <1+ |Do7t—I|

nr.nr —

<1l4+n?|Dot—1]|, <1

nr,nr — r,r

by (11) and (9). Sowe have [®*Y],,y <Yl -
As to the Lipschitz semi-norm we observe that both @ and Y depend on
parameters. Therefore,

|A®*Y|nr,u = |ADCD_1| [Y o @] u + |Dq)_1|nr,nr,v

< |ADCD_1|HI’J7I’,V IYlnr,V + IAYInr,V + IDYInr,I’,V IACDII’,U :

nronr,V IA(Y © cD)Inr,U

It follows that
L _1 L o -
|CI>*Y|M’U < |D<I> — | |nr,nr,v Y1 v+ IYInr,V +IDY v 1@ —idl7y

VIS + o YL XL
nr,V 6772 nr,W Flrv

with W = D(s — 20, 4nr), using the generalized Cauchy estimate and (10), (11).
Since A | Xl < on? by (8) and (9), we obtain

|0°Y] y + 21Oy < Y L+ AIY 1w

as we wanted to show.

4 Iteration and Proof of Theorem A

To iterate the KAM step infinitely often we now choose sequencesfor the perti-
nent parameters. The guiding principle is to choose a geometric sequence for o, to
minimizetheerror estimate by choiceof 1, andtokeep « and M essentially constant.
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Let c; betwicethemaximum of all implicit constants obtained during the KAM
step and depending only on n and . For v > 0 set

o a
a=—(1+27"), M =M(2-2"), A =",
2 M,
and
Ci€) o, 3 €,
€ = 0, (o} = —, = —Q,
vl (oo l)*—1 T T a,0

where »x = g‘. Furthermore, s,,1 = S, — 50,, 11 = nr,, and D, = D(s,,r,).
Asinitia valuefix o = /40 < 1/4 sothat 59 > s1 > - -+ > §/2, and assume

€0 < Y000y, Yo < (Co+ 2'3¢y) 3, (17)

+1_

where ¢y appearsin (6). Findly, let K, = Kp2" with K§ e
1Y0

Iterative Lemma. Suppose H, = N, + P, isgivenon D, x II,, where
N, = (0, (&), y) + (22,(§), z2) isanormal form satisfying |w,|* + 82,15 < M,,

I
[(K, 00 (§)) + (I, $2,(6))] Zav%, k1) € Z,

on IT,, and

Ay
IXp, 7 5, < €.

Then there exists a Lipschitz family of real analytic symplectic coordinate transfor-
mations ®,,1: D, ;1 x I1, — D, and a closed subset

of IT,, where

|
R etp1) = IS € Iyt K, wur1) + (I, £2044)] < osz% } ,

suchthat for H,,; = H, o ®,,7 = N,,1 + P,1 the same assumptions are satisfied
with v + 1 in place of v.

Proof. By induction one verifiesthat ¢, < yoa,,qf /2" for al v > 0. With
the definition of 5, thisimplies ¢, < a,0!n?/co. So the smalness condition (6) of
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the KAM step is satisfied, and there exists atransformation ®,,1: D, ;1 x I1, — D,
taking H, into H,,1 = N, 1 + P,.1. The new error satisfies the estimate

2
Ayl Cl GV
< - v
|XPv+l|rv+1,Dv+1 - 2 (avatnz + nvev
vy

C1 € €
- + < €,11.
2 ((avog)%—l (oo l)*—1 v

In view of (14) the Lipschitz semi-norm of the new frequencies is bounded by

IA

Ci€y

M, +ciIXp I < M, +

Mv =< Mv (1+ 2—v—2) = Mv+1

oy

asrequired. Finally, one verifiesthat cie, < Ciyoar,0) < (@, — a,41)/ Ay, hence
ClA/Kv |valrv <oy, — Oyy].

So by (15) the small divisor estimates hold for the new frequencies with parame-
ter o,,1 Up to |k|] < K,. Removing from I1, the union of the resonance zones
Rﬁﬁl(awrl) for |k| > K, we obtain the parameter domain I1,.; C I1, with the
required properties. 1

With (10), (11) and (14) we also obtain the following estimates.

Estimates. For v > 0,

Ci€,

a0’ (18)
Ay Ay

|a)v+l - wv'l‘[]) s |‘Qv+1 - QUI—S,HV = C16,.

1 . A A
O’_ ICDU-i—l - Idlr:, DU+1 ’ ID®V+1 - I Irl:)er7Dl)+l S
v

Proof of TheoremA.  Suppose the assumptions of Theorem A are satisfied. To
apply the Iterative Lemmawithv =0,set s =S, ro=r,..., No=N, Ph=P
and y = ypof. The smallness condition is satisfied, because

A A t
IXPOIr(?, Do — IXPIr’D(s,r) = Y& = Yo®oogy = €o.

Thesmall divisor conditionsare satisfied by setting To = IT\ [y R (o) . Thenthe
Iterative Lemma applies, and we obtain a decreasing sequence of domains D,, x IT,
and transformations ®" = ®40...0®,: D, x 1,1 — D,_1 for v > 1, such that
Ho®' = H, + P,. Moreover, the estimates (18) hold.
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To prove convergence of the ¥ we note that the operator norm | - |, ¢ satisfies
|ABJ; s < |Al;, IB|ss for r > s. Wethusobtain

1 .
|o"+t — o <|D®"|;,r,.0, Pv+1 —idl;, o

ro,Dyt1 v+l

and

ID®"lryi,.0, = [ [ 1D k0, = [[(1+277%) =2
n=0 u>0

foral v > 0. Also,

L
fo, Dv+l

1 L i
|o"t — o <ID®’|; . p, |Pvs1 —idl p

L
+1D® ]y, 0, 1Par — [

v41

where the first factor is uniformly bounded in asimilar fashion. It follows that

Ao
o, D1)+l

|Vt — @] <Py —idl"p,, -

So the ®V converge uniformly on (| D,, x I1,, = D(s/2) x I1, toaLipschitz
continuous family of real analytic torus embeddings ®: T" x IT, — PP, for which
the estimates of Theorem A hold. Similarly, the frequencies w, and £2, converge
uniformly on IT, to Lipschitz continuous limits w, and £2, with estimates as in

Theorem A. The embedded tori are invariant rotational tori, because

|XH o " — I:)cI)U.X’\‘vlrv,Dv < |(CI)V)*XH o XNvlrU,Dv = |XF’v|rv,DU ’
whenceinthelimit, Xy o ® = D®- X, foreach & € I1,, where X,,, isthe constant
vector field w, on T".

It remainsto prove the characterization of the set I1,, . By construction, IT\IT,
is the union of the inductively defined resonance zones Ry, («,) for v > 0 and
k| > K,_1, where the involved frequencies w,, £2, are Lipschitz on IT,_,;, and
K_; =0, I_; = II. By LemmaA.2, each coordinate function of w, —w on IT, has
aLipschitz continuousextensionto IT preserving minimum, maximum and Lipschitz
semi-norm. Since we are using the sup-norm for w, doing this for each component
we obtain an extension o,:I1 — R" of w, with |®, —a)lkn = |w, —a)|)]i[v. The
same appliesto £2,. It follows that

v |
(@) {s T1: 1k, @) + (1, &)l <ao%}.
k
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The latter are the resonance zones described in Theorem A, if we drop the ™. This
completes the proof of Theorem A. 1

Actually, more information may be extracted from the preceding construction.
On the domain D, x I,, D, = D(3, 5), the normal forms N, convergeto N, =
(W (&), Y) + (82.(&), zz) with frequencies satisfying

{1

[(K, 0. (8)) + (I, 2.6 = A k1) ez,
k

N R

on I, . Also, thetransformations ®¥ convergeto aLipschitz family of real analytic,
symplectic coordinate transformations

o D*X I, — Do,

because each ®" is of first order in y and second order in z, z only, and the cor-
responding jets can be shown to converge uniformly on D(s/2) x I1, with appro-
priate estimates — see [7]. The limit jet then defines ®. Finally, one checks that
O* Xy = Xn, + Xr,, Where R, isof order 3 at Tj. That is, the Taylor series ex-
pansion of R, only contains monomials ykz9z% with 2 |k| + |q + G| > 3. Thus, the
perturbed normal form is transformed back into another normal form up to terms of
higher order. In particular, the preserved invariant tori are al linearly stable.

5 M easur e Estimates and Proof of Theorem B

In estimating the measure of the resonance zones it is not necessary to distin-
guish between the various perturbations w, and £2, of the frequencies, since only
the size of the perturbation matters. Therefore, we now write " and §2’ for all of
them, and we have

1
W -, |2 —2|.5s<a, |o—o,|2 -5 <=—. (19)

Similarly, we write Ry, rather than Ry, for the various resonance zones.
Lee A={l:1<|l| <2}. Wecanfix ¢ > 0 andaconstant D > 1 such that

(g = DI, [1]5. (20)
forl € A,where|l|; =" |Ij| j°. Forexample, onemay take o = min(d, d —1—6)

and D = g , but such specific choices are not important here.
The proof of Theorem B requires a couple of lemmata.
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Lemma3. Thereexistsa positive constant 8 depending on £2 such that
(I, 2°(E)) = 28(1)d
onIIforalll e A,provided |2 — 2|_s <a <8B.

Proof. Consider thecase (I, £2) = 2/ — QJ/ , Which isthe subtlest. Astothe
unperturbed frequencies, (I, £2) ## 0 on IT by assumption A, and

uniformly in & by assumption B. Hence there existsa 8 > 0 such that (I, £2)| >
3Dg(l)qg on I for al | € A. Theresult for the perturbed frequencies then follows
with [(I, 2 — )] < |l|s 12 = 2']_s < DBII;* ()a < DB(1)a.

Lemmad4. If Rj(a) # ¥ and o < B, then

|kl = #(l)d

B

with 9 = .
lwlg +1

Proof. If Ry, («) isnot empty, then [(k, »'(§)) + (I, £2'(§))| < a(l)q a sOme
point & in IT, and thus |K| |’ (§)] > [{I, £2'(5))| — a(l)a = 2B(1)a — a(l)a = B{l)d
by Lemma3. 1

Lemmab. If |k| > 8LM |l|s, then
(04
R < C3—,
} ki ((X)| SAk
with c3 = 9 1L"M"1p"1 and p = diamIT.
Proof. We introduce the unperturbed frequencies ¢ = w (&) as parameters

over the domain A = w(IT) and consider the resonance zones R = w(Ry) in A.
Keeping the old notation for the frequencies we then have w = id,

o' —id|* < 12/1% < 2LM

1
2’

for the perturbed frequencies as functionsof ¢ by (19) and LM > 1.
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Now consider Ri(«). Let ¢(¢) = (k, @'(¢)) + (I, £2'(¢)) . Choose a vector
v e {—11}" suchthat (k,v) = |k andwrite { =rv 4+ w withr e R, w € v*.
Asafunction of r, wethen have, for t > s,

(K, @' ()5 = (K, )5+ (K, o' () — ¢}
> |kl (t—s)— Z |kl (t—s) =3 IkI(t—>9)

and

{1, 27| < 1512155 (t — s)
<2LM|lls(t —s) < F |kl (t —s).

Hence, ¢ (rv + w)l§ > % K| (t —s) uniformly in w. It follows that
(rirv+weA, pro+w) <8} < {r:ir—row)| <45k}

with ro depending miserably on w, and hence

(OF

R (@)| < 4(diam A" o
| kl( )l— ( ) Aklkl

by Fubini’s theorem. Going back to the original parameter domain IT by the inverse
frequency map w1 and observing that diam A < 2M diamTI and (I)g < 91 |k]|,
the final estimate follows. |

Now let
L — 8DLM

*

, Ky =8LM max |l|;,
%) I, <L.

where ¥ and o aredefined in Lemma4 and (20), respectively. Assume o < S from
now on. The preceding three lemmata then lead to the following conclusion.

Lemma6. If |k| > K, or |l|, > L., then
(0%
R < C3—.
| kl(a)} < CsAk
The same holdsfor k £ 0, | = 0.
Proof. If R, («) isnotempty and |l|, > L., then

K| =9 ()g =D I, |l = 8LM|l|;.
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But if |I|, < L., then |k| > K, asoimplies |[k| > 8LM |l|;. So in both cases,
Lemmab5 applies. Thecase | = 0 follows directly from Lemmab. |

Next we consider the “resonance classes’

@) =, R @),

where the star indicates that we exclude the finitely many resonance zones with
O0< |kl < Ksand O < |l|, < L,. Notethat R, () isempty for k=0and o <
by Lemma 3.

Lemma?7. Ifd > 1,then
| S

‘RL(O{)| < C4a'l;—|k

C3
andcs = —.

with s = 2
S d-1 9s

Proof. By Lemma 4 we may restrict the star-union to (I)q < 91 |k|, and
since 2(l)g > [l1g-1,

Ik|®

k
card{l : (I)g <0 1k} <cad{l:|llg_; <2071 |kl} < S5

The result now followswith Lemma6. 1

Recdll that for d = 1 wehavea k > 0 and aconstant a > 1 such that

$2; — $2i a . .
‘Ij—l <, > .
I — ) ]«
Lemma8. Ifd=1,then
k|2
R, < G50 —,
| Ry (@)] < Csx A
. ac X
W|thc5:—3,wherex*: IX] for real x.
2 1+ x|

Proof. Write A = AT UA~,where A~ containsthose| € A with two non-
zero components of opposite sign, and A* containstherest. For | € A*™ we have
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(g = I, hence card {I € A* : (I)g <®~1|k|} <®2|k* and

kI
’UIeAJr Ru (Ot)’ < C5Ot—|k
asin the previous proof.

The minus-case, however, requires more consideration. For | € A~ we have
(I,22") = £ — £2{ and {I)g = |i — jI, and up to an irrelevant sign, | is uniquely
determined by the two integers i # j. We may supposethat i — ) = m > 0.
Then |(I, 2" — 2)] < ;12" - 2]_; < «(® + j®) and |(I, 2) —m| < amj~*
Therefore

k

, . am
kij(a)={€-|<k,w) +(, Q>|<A}

def

m 2 am
Ekaj={$1|(k,w/)+m|<a+ ¢ }

Ao j

Moreover, Qkmj S Qkmj, for j > jo. For fixed m < 9 ~11k|, wethen obtain

‘Ui—j =m k'J(a)‘ klj(a)‘+|kalo‘
J<Jo
21
<c<j°a+a+a> “
AT ie? i)
By choosing either jo—° = A, or ajo™ = A, whichever gives the better estimate,

and using the assumption —§ < x we arrive at

* , o e a”
‘Ui_jzm kij(a)‘ < acs W+F <a03¥.
Summing over m,
* O[K*
/ /
Uy R < 2 U R @) < eslkd N
m| <o~ l|k| K

The two cases together give the final estimate. I

Proof of TheoremB. We can choose t so that

1 1

Z Ik[® Z |k|2 Z -
AT 1+ k™ T 14 KT

Ik|>K A k=K Ik|>=K
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For example,

T> 51 (22)
(r1—|—3)—(S ford = 1.

2
n+1+—— ford>1,
+1+ d-1 >

Letting X = {(k,]) : 0 < |K| < K4,0 < |l|, < L.} wethen obtain

"
) U fRKl(a)‘SZ > W(a>|<§%<cﬁa“

(k,HgX v>0 |K|>K,_1

by thedefinition of theresonanceclasses R («) with n asin Theorem B and aconstant
ce Of theform &(diam IT)"~*, where & does not increase when the parameter domain
[T decreases. This gives the required estimate. Findly, if § < 0O, then |l|; < 2 for
al | and hence K, < 16LM. Thisproves Theorem B. |

Proof of Corollary C. By choosing y < y/2LM thefrequencies w, and £2,
satisfy the assumptions of Theorem B, and thus

‘ U fREl(oz)‘—>0 asa— 0.

(k,1HgX
Choosing, in the definition y = yo0{, aso yo < oKL in addition to (17), then
30
KOT-HI. — 1 > K‘L’—i—l
Cayo ~

so the remaining resonance zones are all defined in terms of the unperturbed frequen-
cies. Hence, by Assumption A, the monotonicity of RY () in o and the boundedness
of IT, we have |R) ()| — 0 asa — 0 for each (k, ) € X. Since X isfinite, also

‘Ufo(k)l(O‘)‘_)O asa— 0,

which givesthe clam. Finadly, if § < 0, then K, < 16LM. 1§
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6 Proof of Theorem D

To prove Theorem D we precede the KAM iteration by one modified KAM step.

For this preparatory step the small divisor estimates (5) are used with a parameter
@ =al™ > q,
where w > 0 ischosen later. Moreover, for (I, £2) = 2, — £2j, 1 # ], weusethe
modified estimate
& i jl
k 2 —Q2il>— —— 23
ko) +2 -2 ~ Ac¢ mini, j7) ©39

with positive 7 < p — p. The upshot is that the measure estimates are improved at
the expense of deteriorating the regularity of the vector field.

Using the modified small divisor estimates in the solution of the linearized
equation we obtain

aB
s o A =
IXFIf),r,D(s—a,r) = ry IXRIp,rD(S,r) ) p=p—7>0p.

Since & > «, the KAM step applies under the same assumptions as before, but
now the estimates of Xg are to be understood in terms of the weaker norm |- |, .
Accordingly, the vector field of the next perturbation Py — the starting point for the
iteration—isalso bounded inthisnormonly. Using the notation of section 4 we obtain

A

|XP0|b,nl’ <

L )2 ) 1 RV
aotn? (lx"lﬁ,r) + 1 1Xplp, < (Got)<1 (IXPIEM)
by choosing #* = @~ 'o =" [Xp}, . With the assumption | Xp|;, < ye«, the choices
o =00, y < ooy (asfor thefirst step of theiteration) and & = o>~ we obtain

A h ~ w
|Xpo|mr <vya, & =a™ < a.
For the frequencies wq, §2¢ of the new normal form Ny the usual estimates (14) hold
with —§ < p — p. Itisnot necessary, however, to keep track of the small divisor
estimates for the new frequencies, since the KAM scheme now starts from scratch,
with parameters @ and p instead of o and p, respectively.

We estimate the measure of the resonance zones eliminated in the first and the
subsequent steps. To thisend fix T asin (22) assuming —8 < P — p. For brevity,
the notation * <’ now includes also constants that depend on = and are of the same
form asthe constants c3, ... in section 5.
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Let E4 = U, R (@) be the union of the resonance zones eliminated in the
preparatory step and defined in terms of the modified small divisor estimates.

Lemma 9.

1 form > 1,

— form < 1.
k+1—m

Proof. Wefirst show that the estimate of Lemma 8 changes to

s A 2 IKI?
[Re@)] < & 5. (24)
k
The estimate for | € A™ is the same as before, giving a contribution of the size
k|2 ~
&%. For|l ¢ A— and 7 > 1 we have |5Rﬁij(&)| < ALjﬁ,andthesumover al j
k k

converges to asimilar contribution. For | € A~ and = < 1, however, the modified
small divisor estimate (23) gives

C Qum dzef{s 1k, ) 4+ m) < 2 am}

— + —
AkJT[ JK

Thereisno contributionfrom 2’ — 2 here, sincewe are dealing with the unperturbed
frequencies. For fixed m we then obtain

‘Ui*—jzm kij (@)

- & 1 N a - & N a - a*
Akjfjo jn J(I)C Akjg_l 16 Aﬁ

by choosing j§*1™ = Ac/&. Then (24) follows by summing over m.

Summing (24) over k we obtain one contribution to the estimate of |E;|. The
other contribution isdueto thefinitely many resonance zones R, (&) with (k,I) € X.
In each of them, (k, w) + (I, £2) is a nontrivial affine function of &, so one has
| R (@)| < &. Thisprovesthelemma. 1§

TheKAM iteration now startswiththeparameter set Iy = IT\ E; and parameter

o = alt?,
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Lemma 10. For sufficiently small «,

ITTp\ITg| < max (a, &“) , n= = K"

Proof. We show that now the estimate of Lemma 8 changesto

k|?

%@ < ma e ) L

Again, theestimate for | € A" isthesame. For | € A, thereis a contribution of
order o to the estimate of 2’ — £2 from the preparatory step. So instead of (21) we

U /
I— J I

By proper choiceof jo thisgivesthebound max («, &) A®" and hencethe estimate
of }R{((o?) \ . Therest of the proof isanalogousto the preceding one. Just note that the
functions (k, o)+ (I, £2’) areLipschitz close of order « to nontrivial affinefunctions
of £. 1

The proof of Theorem D is now amost complete. The two lemmata combined
give
ITI\IT,| < &" + &
T

For 7 < p— p < 1 theright hand sideisminimized by choosingw = ————,
de +4—m

30 that
1-— 3w _1+w
k+1l—7m Kk+1’

- K
hence ¢* = ¢* = o* with t = ———— . This proves Theorem D.
o= e ¥1—n/4 P
7 Structural Stability

The results may be used to show that a certain class of hamiltonians is struc-
turally stable. Let

N = (&), y) + 3 (&), u*+v?) + N

be a hamiltonian on some phase space P2 depending on parameters & € IT C R",
IT a closed bounded set of positive Lebesgue measure. Let us say that H is a
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regular normal formif the following three conditions are satisfied, with notations as
in section 1.

Condition A*: Nondegeneracy and Nonresonance. Themap & — w (&) isa
lipeomorphism between IT and its image. Moreover, there exist positive constants
oo and 1o such that

(K, (@) + 1, 2] > 2ol

— 25

foral (k,1) € Z and & € IT, where d isdefined in condition B*.

Condition B*: Spectral Asymptotics. Thereexistd > 1,5 <d—1anda
fixed sequence 2 with £2; = j9 + ..., suchthat £2; = 2; + 2;, where the tails
£2; define aLipschitz continuous map £2: T — £2°.

Condition C*: Regularity. For each & € I1 the hamiltonian vector field X
defines near T areal analytic map

X ﬂ)a,p_>.j)a,f) {F_)Zp ford>1,
N- R

p>p ford=1,

which is Lipschitz in & and where N is of order 3 at T3 as defined at the end of
section 4.

Theorem E. Aregular normal form N isstructurally stable under sufficiently
small perturbations of the sameregularity as N . That is, for every such perturbation
H of N, thereexistsanother Cantor set I, C IT of positive Lebesgue measureand a
Lipschitz family of real analytic, symplectic coordinate transformations ® near T,
such that ®* Xy = Xy, with another regular normal form N, with respect to I1..

Proof. Let N bearegular normal form. Then assumptions A and B are satis-
fied, and the parameters L, M, t and « arefixed. Theorem B implies that for the
union of resonance zones R(«) = | J Ry (o) C I1 defined in terms of arbitrary but
sufficiently small perturbations of the frequencies w and 2 asin Theorem A, we
have |R(x)| — 0 asa — 0. Hence, the measure of any of thesets I, in Theorem A
converges uniformly to the measure of I1 as « tendsto zero.

Now fix o sufficiently small to make this measure positive. By condition C*,

o L ~
|XN|r,D(s,r) + M |XN|r,D(s,r) < %)/Ol (26)

for all small positive r and s. Then Theorems A and B apply to every perturbation
H = N+ P of N, where P isof the same regularity as N and satisfies the same
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estimate (26) for some positive r and s. We obtain a Cantor set I1, C IT of positive
measureand, by theremark at theend of section 4, afamily of real analytic, symplectic
coordinate transformations & near J7 suchthat ®*Xy = Xn, + Xgr, , Where R, is
of order 3at T . Moreover, the frequenciesof N satisfy the diophantine conditions
(25) with parameters «/2 and 7. It follows that the hamiltonian N, = N, + R, is
aregular normal form. 1

8 Concluding Remarks

Remark 1. The regularity condition may be written in the form

In the framework of differential operators on Sobolev spaces, d and p — p may be
identified with the orders of the linear and nonlinear part of the associated differential
operator L, respectively, Thus, L hasto be quasi-linear by the first condition, and
its nonlinear part has to be bounded by the second condition.

The first assumption is rather natural. Nonlinearities of the same order as the
linearity may cause the blow up of every nontrivial solution [6], so quasi-periodic
solutions may not exist at all. The second condition, however, is not necessary, but
makes the proof and the result more transparent. It happens to be satisfied by the
nonlinear Schrodinger and wave equationsin [5,8]. It may beremoved for d > 1 at
the expense of amore convoluted proof, so that the theorem also applies for example
to perturbations of the KdV equation. See[3] for moredetailsaswell asaforthcoming
publication by Sergej Kuksin.

Remark 2. The results of this paper improve on the results obtained in [7] in
many ways. — the phase space can be chosen appropriately to suit applications to
nonlinear partial differential equations; — the nondegeneracy condition is weaker; —
the dependence on the parameters & need only be Lipschitz; — the frequencies $2
may only grow linearly, thus violating the finiteness condition in [7].

Moreover, aflaw in the proof of Lemma8.1in[7] isfixed, that was pointed out
by H. Rissmann. There not only the t -derivative of the function ® (w +tv), but also
its Lipschitz semi-norm needsto be controlled in order to obtain the desired measure
estimate. Such an estimate is provided here.

Due to the weaker nondegeneracy assumption the result above gives no con-
trol over the rate of convergence in the measure estimate (2). However, with more
information about the unperturbed frequencies such control is easily obtained. For
example, suppose that w and §2 are differentiable on IT, that w: [T — A isadif-
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feomorphism, and that for some ap > 0, R, (ag) = @ for each (k, 1) € X for which
k liesin the closed convex hull of the set of gradients {9, (I, 2 cw™1(0)) : ¢ € A},
Then the arguments of Lemma 5 and Lemma 8.1 in [7] show that

‘Ux Ry (oz)‘ <& e,

recovering the result of [7].

Remark 3. We finally compare our results with those of Kuksin in [4]. By
and large, the basic KAM theorems are the same, with the same range of applica-
tions to partial differential equations. There are, however, some differences. — the
nondegeneracy condition of Assumption A is weaker, as a certain collection of ex-
act resonances is only required to be of measure zero; — we can allow for Sobolev
spaces ¢2P of exponentially decreasing sequences by letting a > 0, which avoids
a posteriori arguments about the analyticity of the solutions obtained by the KAM
theorem; — the dependence of the measure estimates on the asymptotic properties of
the eigenvalues A; inthecase d = 1 ismade explicit in terms of the exponent 1 in
Theorem B. Indeed, in [4] this point was overlooked, and the estimates for this case
such as (4.11) on page 77 are not correct. This was later corrected in An Erratum
available from Serggl Kuksin; see also Appendix 2 in[1].

Another differenceisin the proofs. Here, in Theorem A aswell asinits proof,
the unperturbed hamiltonian N describes a linear system of equations, and higher
order integrable terms are simply considered as perturbations as well. In Kuksin's
set up, the unperturbed system also may contain nonlinear terms. This considerably
complicatesthe handling of the linearized equation, and many more careful estimates
are required. On the other hand, it provides some greater flexibility in applying the
results.

This, however, seems to be of advantage only in the subtle case of small am-
plitude solutions u of the nonlinear wave equation

Ut = Uyy — MU — au® + O(ud), m>0 a0,

on [0, 7]. Here, one has d = 1, and the problem is to find sets of nonresonant
frequencies of positive measure in the presence of a“small twist”. Still, the results
of Bobenko and Kuksin [1] for this equation are not better than in [8], because on
the other hand they had to cope with worse asymptotic properties of the frequencies,
namely k = 1 instead of x = 2 asin [8]. — Combining both approaches, one could
also handle O(u?)-terms. But such asmall improvement requires quite a big effort.
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A Utilities
Lemma A.l. If A= (Aj) isa bounded linear operator on 22, then also

B = (Bij) with

|Aj |

=)

B = I # ],

T

/3 1Al

and B;j; = 0 isabounded linear operator on ¢2, and ||B|| <

Proof. By the Schwarz inequality, we have

1 b4
B.. , B S A —:)\’ A , )\,:—’
;| n le\ il < 1Al /ékz 1A Ne

foral i and j. Hence, again by Schwarz,

LIEDY (JZ\Bu} )
< Z(;\BHD (2}: 8] ui]°)
< AIALY D B o]’

2
< AZIAIPD o [" =22 1IAIZ v)®. §
i
Lemma A.2. Let F ¢ R" beclosed and u: F — R a bounded Lipschitz
continuousfunction. Thenthereexistsanextension U: R" — R of u, whichpreserves
minimum, maximum and Lipschitz semi-normof u.

Proof. Let A = |u|g, and define

U(x) =sup(u(§) — A |x — &)
teF



32  Appendix A: Utilities

for x € R". Thisisanextension of u toall of R". By thetriangleinequality, G(x) >
uE) — X —&| —a|x—x| foral & € F and hence Gi(x) > G(x) — A |x — x/|.
Interchanging x and x’, we get

|Gi(x) — G(x)| 5
x=x| =

It followsthat |l]|]§n = |u|§. Replacing G above maxg u by maxg u doesnot change
its Lipschitz semi-norm, and similarly below ming u. The resulting function U has
all the required properties. 1

Let E and F betwo complex Banach spaceswithnorms || - ||g and || - ||, and
let G bean anaytic map from an open subset of E into F. Thefirst derivative d,G
of G at v isalinear map from E into F, whose induced operator normis

Id, G(W) e

Id, Gl g = max
’ w0 lullg

The Cauchy inequality can be stated as follows.

LemmaA.3. Let G beananalytic map fromtheopen ball of radiusr around
v in E into F suchthat |G| < M onthisball. Then

M
1d,GllrE < R

Proof. Letu=#0in E. Then f(z) = F(v+ zu) isan analytic map from the
complex disc ||z]| < r/|ullg in C into F that isuniformly bounded by M. Hence,

M
Ido Tlle = lld, F(Wllr < - llulle

by the usual Cauchy inequality. The above statement follows, since u # 0 was
arbitrary. 1

Let V beanopendomaininarea Banach space E withnorm || - ||, TT asubset
of another real Banach space, and X:V x I[1 — E a parameter dependent vector
fieldon V, whichis C* on V and Lipschitzon IT. Let ¢! beitsflow. Supposethere
isasubdomain U C V suchthat ¢':U x IT — V for —1 <t < 1.
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LemmaA.4. Under the preceding assumptions,

lp* —idlly < IXllv ,
I¢' —idll5 < exp(IDXIIv) IIXIIy

for —1 <t < 1, whereall norms are understood to be taken also over IT.
Proof. Let0<t<1. Wehave ¢! —id = [j X o ¢°ds, so thefirst estimate
isclear. Toprovethesecond ong, let A¢t = @' (-, &) —@'(-,¢) for &, ¢ € TI1. Then
t

A(pt —id) :/ A(Xo¢®)ds

0

t t
:/ AX0¢SdS+/ (Xo¢s(-,§)—Xo¢S(-,§))dS,
0 0
hence
t t
1A' —id)lly S/O IAX]ly dS+/o IDXIly [1A¢®|ly ds
t
< [AX]ly + IIDXII\//0 1A(@° —id) |y ds.
With Gronwall’s inequality it follows that
1A' —id)lly < 1AXIly exp(t IDX]ly).

Dividing by the norm of & — ¢ and taking the supremum over & £ ¢ in Il the
Lipschitz estimate follows. 1
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